Skip to main content

Machine learning regression off-the-shelf

Project description

Machine learning regression (mlregression)

Machine Learning Regression (mlregrresion) is an off-the-shelf implementation of the most popular ML methods that automatically takes care of fitting and parameter tuning.

Currently, the fully implemented models include:

  • Ensemble trees (Random forests, XGBoost, LightGBM, GradientBoostingRegressor, ExtraTreesRegressor)
  • Penalized regression (Ridge, Lasso, ElasticNet, Lars, LassoLars)
  • Neural nets (Simple neural nets with 1-5 hidden layers, rely activation, and early stopping)

NB! When using penalized regressions, consider using the native CV-implementation from scikit-learn for speed. See Example 6 below.

In addition, all scikit-learn regressors can be supplied (e.g., LinearRegression, HuberRegressor, or BayesianRidge), but then one has to provide a parameter grid as well!

Please contact the authors below if you find any bugs or have any suggestions for improvement. Thank you!

Author: Nicolaj Søndergaard Mühlbach (n.muhlbach at gmail dot com, muhlbach at mit dot edu)

Code dependencies

This code has the following dependencies:

  • Python 3.6+
  • numpy 1.19+
  • pandas 1.3+
  • scikit-learn 1+
  • scikit-learn-intelex 2021+
  • xgboost 1.3+
  • lightgbm 3.2+

Usage

We demonstrate the use of mlregression below, using random forests, xgboost, and lightGBM as underlying regressors.

#------------------------------------------------------------------------------
# Libraries
#------------------------------------------------------------------------------
# Standard
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split

# This library
from mlregression.mlreg import MLRegressor
from mlregression.mlreg import RF
from mlregression.estimator.boosting import XGBRegressor, LGBMegressor

#------------------------------------------------------------------------------
# Data
#------------------------------------------------------------------------------
# Generate data
X, y = make_regression(n_samples=500,
                       n_features=10, 
                       n_informative=5,
                       n_targets=1,
                       bias=0.0,
                       coef=False,
                       random_state=1991)

X_train, X_test, y_train, y_test = train_test_split(X, y)

#------------------------------------------------------------------------------
# Example 1: Main use of MLRegressor
#------------------------------------------------------------------------------
# Instantiate model and specify the underlying regressor by a string
mlreg = MLRegressor(estimator="RandomForestRegressor",
                    max_n_models=2)

# Fit
mlreg.fit(X=X_train, y=y_train)

# Predict
y_hat = mlreg.predict(X=X_test)

# Access all the usual attributes
mlreg.best_score_
mlreg.best_estimator_

# Compute the score
mlreg.score(X=X_test,y=y_test)

#------------------------------------------------------------------------------
# Example 2: RF
#------------------------------------------------------------------------------
# Instantiate model
rf = RF(max_n_models=2)

# Fit
rf.fit(X=X_train, y=y_train)

# Predict and score
rf.score(X=X_test, y=y_test)

#------------------------------------------------------------------------------
# Example 3: XGBoost
#------------------------------------------------------------------------------
# Instantiate model
xgb = MLRegressor(estimator=XGBRegressor(),
                  max_n_models=2)

# Fit
xgb.fit(X=X_train, y=y_train)

# Predict and score
xgb.score(X=X_test, y=y_test)

#------------------------------------------------------------------------------
# Example 4: LightGBM
#------------------------------------------------------------------------------
# Instantiate model
lgbm = MLRegressor(estimator=LGBMegressor(),
                  max_n_models=2)

# Fit
lgbm.fit(X=X_train, y=y_train)

# Predict and score
lgbm.score(X=X_test, y=y_test)

#------------------------------------------------------------------------------
# Example 5: Neural Nets
#------------------------------------------------------------------------------
# Instantiate model
nn = MLRegressor(estimator="MLPRegressor",
                  max_n_models=2)

# Fit
nn.fit(X=X_train, y=y_train)

# Predict and score
nn.score(X=X_test, y=y_test)

#------------------------------------------------------------------------------
# Example 6: LassoCV/RidgeCV/ElasticNetCV/LarsCV/LassoLarsCV (native scikit-learn implementation)
#------------------------------------------------------------------------------
# Instantiate model
penalized = MLRegressor(estimator="LassoCV")

# Fit
penalized.fit(X=X_train, y=y_train)

# Predict and score
penalized.score(X=X_test, y=y_test)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlregression-0.0.11.tar.gz (20.9 kB view details)

Uploaded Source

Built Distribution

mlregression-0.0.11-py3-none-any.whl (22.4 kB view details)

Uploaded Python 3

File details

Details for the file mlregression-0.0.11.tar.gz.

File metadata

  • Download URL: mlregression-0.0.11.tar.gz
  • Upload date:
  • Size: 20.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for mlregression-0.0.11.tar.gz
Algorithm Hash digest
SHA256 1decae5bcc50a6c125a6f3b1ca899e73e89b44bc9df52e84e622ad5b974a7b0d
MD5 feff47f93356ecc0c83d42e08fd7ebad
BLAKE2b-256 8bb8d1a826db1e1da0df79dce2ffda304068363df31ccf34210a03e54bca4fef

See more details on using hashes here.

File details

Details for the file mlregression-0.0.11-py3-none-any.whl.

File metadata

  • Download URL: mlregression-0.0.11-py3-none-any.whl
  • Upload date:
  • Size: 22.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for mlregression-0.0.11-py3-none-any.whl
Algorithm Hash digest
SHA256 7cc22c96f8ea5d17b2ebc4eaffb8887e83f1c2cff1464da6f3df506844323449
MD5 13a8c3d70fe79580478d6f235381cdfe
BLAKE2b-256 38d5aa7b80b6d9dd0dd5fd6f7a606691f761762930e651049c508f0d0771580a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page