Skip to main content

Machine learning regression off-the-shelf

Project description

Machine learning regression (mlregression)

Machine Learning Regression (mlregrresion) is an off-the-shelf implementation of the most popular ML methods that automatically takes care of fitting and parameter tuning.

Currently, the fully implemented models include:

  • Ensemble trees (Random forests, XGBoost, LightGBM, GradientBoostingRegressor, ExtraTreesRegressor)
  • Penalized regression (Ridge, Lasso, ElasticNet, Lars, LassoLars)
  • Neural nets (Simple neural nets with 1-5 hidden layers, rely activation, and early stopping)

NB! When using penalized regressions, consider using the native CV-implementation from scikit-learn for speed. See Example 6 below.

In addition, all scikit-learn regressors can be supplied (e.g., LinearRegression, HuberRegressor, or BayesianRidge), but then one has to provide a parameter grid as well!

Please contact the authors below if you find any bugs or have any suggestions for improvement. Thank you!

Author: Nicolaj Søndergaard Mühlbach (n.muhlbach at gmail dot com, muhlbach at mit dot edu)

Code dependencies

This code has the following dependencies:

  • Python 3.6+
  • numpy 1.19+
  • pandas 1.3+
  • scikit-learn 1+
  • scikit-learn-intelex 2021+
  • xgboost 1.3+
  • lightgbm 3.2+

Usage

We demonstrate the use of mlregression below, using random forests, xgboost, and lightGBM as underlying regressors.

#------------------------------------------------------------------------------
# Libraries
#------------------------------------------------------------------------------
# Standard
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split

# This library
from mlregression.mlreg import MLRegressor
from mlregression.mlreg import RF
from mlregression.estimator.boosting import XGBRegressor, LGBMegressor

#------------------------------------------------------------------------------
# Data
#------------------------------------------------------------------------------
# Generate data
X, y = make_regression(n_samples=500,
                       n_features=10, 
                       n_informative=5,
                       n_targets=1,
                       bias=0.0,
                       coef=False,
                       random_state=1991)

X_train, X_test, y_train, y_test = train_test_split(X, y)

#------------------------------------------------------------------------------
# Example 1: Main use of MLRegressor
#------------------------------------------------------------------------------
# Instantiate model and specify the underlying regressor by a string
mlreg = MLRegressor(estimator="RandomForestRegressor",
                    max_n_models=2)

# Fit
mlreg.fit(X=X_train, y=y_train)

# Predict
y_hat = mlreg.predict(X=X_test)

# Access all the usual attributes
mlreg.best_score_
mlreg.best_estimator_

# Compute the score
mlreg.score(X=X_test,y=y_test)

#------------------------------------------------------------------------------
# Example 2: Linear regression
#------------------------------------------------------------------------------
# Instantiate model
ols = MLRegressor(estimator="LinearRegression")

# Fit
ols.fit(X=X_train, y=y_train)

# Predict and score
ols.score(X=X_test, y=y_test)

#------------------------------------------------------------------------------
# Example 3: XGBoost
#------------------------------------------------------------------------------
# Instantiate model
xgb = MLRegressor(estimator="XGBRegressor",
                  max_n_models=2)

# Fit
xgb.fit(X=X_train, y=y_train)

# Predict and score
xgb.score(X=X_test, y=y_test)

#------------------------------------------------------------------------------
# Example 4: LightGBM
#------------------------------------------------------------------------------
# Instantiate model
lgbm = MLRegressor(estimator="LGBMegressor",
                  max_n_models=2)

# Fit
lgbm.fit(X=X_train, y=y_train)

# Predict and score
lgbm.score(X=X_test, y=y_test)

#------------------------------------------------------------------------------
# Example 5: Neural Nets
#------------------------------------------------------------------------------
# Instantiate model
nn = MLRegressor(estimator="MLPRegressor",
                  max_n_models=2)

# Fit
nn.fit(X=X_train, y=y_train)

# Predict and score
nn.score(X=X_test, y=y_test)

#------------------------------------------------------------------------------
# Example 6: LassoCV/RidgeCV/ElasticNetCV (native scikit-learn implementation)
#------------------------------------------------------------------------------
# Instantiate model
penalized = MLRegressor(estimator="LassoCV")

# Fit
penalized.fit(X=X_train, y=y_train)

# Predict and score
penalized.score(X=X_test, y=y_test)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlregression-0.1.0.tar.gz (20.8 kB view details)

Uploaded Source

Built Distribution

mlregression-0.1.0-py3-none-any.whl (22.4 kB view details)

Uploaded Python 3

File details

Details for the file mlregression-0.1.0.tar.gz.

File metadata

  • Download URL: mlregression-0.1.0.tar.gz
  • Upload date:
  • Size: 20.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for mlregression-0.1.0.tar.gz
Algorithm Hash digest
SHA256 012a8e11101c19739df67c08a88a18dbc8cf8f84548003fe69b4d7e58664d1d4
MD5 d0788815f8c5897944d4a310da7f13ec
BLAKE2b-256 b0181198b5daf43312f9c7329be2f50316d1fd0f8e2aa4478754ec0f846d6989

See more details on using hashes here.

File details

Details for the file mlregression-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: mlregression-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 22.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for mlregression-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 cd9202338eb0cd16ced9b107912d06a921daa5f0703ae257cdd8432df166d505
MD5 9ebc5b4533fd0c0d9e3540d1bd525f1e
BLAKE2b-256 551057c02805c8ea986b9b0b294064d96a1f5375be65f3a5b663a82d3454d7fe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page