Machine learning regression off-the-shelf
Project description
Machine learning regression (mlregression)
Machine Learning Regression (mlregrresion) is an off-the-shelf implementation of the most popular ML methods that automatically takes care of fitting and parameter tuning.
Currently, the fully implemented models include:
- Ensemble trees (Random forests, XGBoost, LightGBM, GradientBoostingRegressor, ExtraTreesRegressor)
- Penalized regression (Ridge, Lasso, ElasticNet, Lars, LassoLars)
- Neural nets (Simple neural nets with 1-5 hidden layers, rely activation, and early stopping)
NB! When using penalized regressions, consider using the native CV-implementation from scikit-learn for speed. See Example 6 below.
In addition, all scikit-learn regressors can be supplied (e.g., LinearRegression, HuberRegressor, or BayesianRidge), but then one has to provide a parameter grid as well!
Please contact the authors below if you find any bugs or have any suggestions for improvement. Thank you!
Author: Nicolaj Søndergaard Mühlbach (n.muhlbach at gmail dot com, muhlbach at mit dot edu)
Code dependencies
This code has the following dependencies:
- Python 3.6+
- numpy 1.19+
- pandas 1.3+
- scikit-learn 1+
- scikit-learn-intelex 2021+
- xgboost 1.3+
- lightgbm 3.2+
Usage
We demonstrate the use of mlregression below, using random forests, xgboost, and lightGBM as underlying regressors.
#------------------------------------------------------------------------------
# Libraries
#------------------------------------------------------------------------------
# Standard
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
# This library
from mlregression.mlreg import MLRegressor
from mlregression.mlreg import RF
from mlregression.estimator.boosting import XGBRegressor, LGBMegressor
#------------------------------------------------------------------------------
# Data
#------------------------------------------------------------------------------
# Generate data
X, y = make_regression(n_samples=500,
n_features=10,
n_informative=5,
n_targets=1,
bias=0.0,
coef=False,
random_state=1991)
X_train, X_test, y_train, y_test = train_test_split(X, y)
#------------------------------------------------------------------------------
# Example 1: Main use of MLRegressor
#------------------------------------------------------------------------------
# Instantiate model and specify the underlying regressor by a string
mlreg = MLRegressor(estimator="RandomForestRegressor",
max_n_models=2)
# Fit
mlreg.fit(X=X_train, y=y_train)
# Predict
y_hat = mlreg.predict(X=X_test)
# Access all the usual attributes
mlreg.best_score_
mlreg.best_estimator_
# Compute the score
mlreg.score(X=X_test,y=y_test)
#------------------------------------------------------------------------------
# Example 2: Linear regression
#------------------------------------------------------------------------------
# Instantiate model
ols = MLRegressor(estimator="LinearRegression")
# Fit
ols.fit(X=X_train, y=y_train)
# Predict and score
ols.score(X=X_test, y=y_test)
#------------------------------------------------------------------------------
# Example 3: XGBoost
#------------------------------------------------------------------------------
# Instantiate model
xgb = MLRegressor(estimator="XGBRegressor",
max_n_models=2)
# Fit
xgb.fit(X=X_train, y=y_train)
# Predict and score
xgb.score(X=X_test, y=y_test)
#------------------------------------------------------------------------------
# Example 4: LightGBM
#------------------------------------------------------------------------------
# Instantiate model
lgbm = MLRegressor(estimator="LGBMegressor",
max_n_models=2)
# Fit
lgbm.fit(X=X_train, y=y_train)
# Predict and score
lgbm.score(X=X_test, y=y_test)
#------------------------------------------------------------------------------
# Example 5: Neural Nets
#------------------------------------------------------------------------------
# Instantiate model
nn = MLRegressor(estimator="MLPRegressor",
max_n_models=2)
# Fit
nn.fit(X=X_train, y=y_train)
# Predict and score
nn.score(X=X_test, y=y_test)
#------------------------------------------------------------------------------
# Example 6: LassoCV/RidgeCV/ElasticNetCV (native scikit-learn implementation)
#------------------------------------------------------------------------------
# Instantiate model
penalized = MLRegressor(estimator="LassoCV")
# Fit
penalized.fit(X=X_train, y=y_train)
# Predict and score
penalized.score(X=X_test, y=y_test)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file mlregression-0.1.0.tar.gz
.
File metadata
- Download URL: mlregression-0.1.0.tar.gz
- Upload date:
- Size: 20.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 012a8e11101c19739df67c08a88a18dbc8cf8f84548003fe69b4d7e58664d1d4 |
|
MD5 | d0788815f8c5897944d4a310da7f13ec |
|
BLAKE2b-256 | b0181198b5daf43312f9c7329be2f50316d1fd0f8e2aa4478754ec0f846d6989 |
File details
Details for the file mlregression-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: mlregression-0.1.0-py3-none-any.whl
- Upload date:
- Size: 22.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cd9202338eb0cd16ced9b107912d06a921daa5f0703ae257cdd8432df166d505 |
|
MD5 | 9ebc5b4533fd0c0d9e3540d1bd525f1e |
|
BLAKE2b-256 | 551057c02805c8ea986b9b0b294064d96a1f5375be65f3a5b663a82d3454d7fe |