Skip to main content

Machine learning regression off-the-shelf

Project description

Machine learning regression (mlregression)

Machine Learning Regression (mlregrresion) is an off-the-shelf implementation of the most popular ML methods that automatically takes care of fitting and parameter tuning.

Currently, the fully implemented models include:

  • Ensemble trees (Random forests, XGBoost, LightGBM, GradientBoostingRegressor, ExtraTreesRegressor)
  • Penalized regression (Ridge, Lasso, ElasticNet, Lars, LassoLars)
  • Neural nets (Simple neural nets with 1-5 hidden layers, rely activation, and early stopping)

NB! When using penalized regressions, consider using the native CV-implementation from scikit-learn for speed. See Example 6 below.

In addition, all scikit-learn regressors can be supplied (e.g., LinearRegression, HuberRegressor, or BayesianRidge), but then one has to provide a parameter grid as well!

Please contact the authors below if you find any bugs or have any suggestions for improvement. Thank you!

Author: Nicolaj Søndergaard Mühlbach (n.muhlbach at gmail dot com, muhlbach at mit dot edu)

Code dependencies

This code has the following dependencies:

  • Python 3.6+
  • numpy 1.19+
  • pandas 1.3+
  • scikit-learn 1+
  • scikit-learn-intelex 2021+
  • xgboost 1.3+
  • lightgbm 3.2+

Installation

Before calling pip install mlregression, we recommend using conda to install the dependencies. In our experience, calling the following command works like a charm:

conda install -c conda-forge pandas">=1.3" numpy">=1.19" scikit-learn">=1" scikit-learn-intelex">=2021.3" daal">=2021.3" daal4py">=2021.3" tbb">=2021.4" xgboost">=1.3" lightgbm">=3.2" --force-reinstall

After this, install mlregression by calling pip install mlregression.

Usage

We demonstrate the use of mlregression below, using random forests, xgboost, and lightGBM as underlying regressors.

#------------------------------------------------------------------------------
# Libraries
#------------------------------------------------------------------------------
# Standard
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split

# This library
from mlregression.mlreg import MLRegressor
from mlregression.mlreg import RF
from mlregression.estimator.boosting import XGBRegressor, LGBMegressor

#------------------------------------------------------------------------------
# Data
#------------------------------------------------------------------------------
# Generate data
X, y = make_regression(n_samples=500,
                       n_features=10, 
                       n_informative=5,
                       n_targets=1,
                       bias=0.0,
                       coef=False,
                       random_state=1991)

X_train, X_test, y_train, y_test = train_test_split(X, y)

#------------------------------------------------------------------------------
# Example 1: Main use of MLRegressor
#------------------------------------------------------------------------------
# Instantiate model and specify the underlying regressor by a string
mlreg = MLRegressor(estimator="RandomForestRegressor",
                    max_n_models=2)

# Fit
mlreg.fit(X=X_train, y=y_train)

# Predict
y_hat = mlreg.predict(X=X_test)

# Access all the usual attributes
mlreg.best_score_
mlreg.best_estimator_

# Compute the score
mlreg.score(X=X_test,y=y_test)

#------------------------------------------------------------------------------
# Example 2: Linear regression
#------------------------------------------------------------------------------
# Instantiate model
ols = MLRegressor(estimator="LinearRegression")

# Fit
ols.fit(X=X_train, y=y_train)

# Predict and score
ols.score(X=X_test, y=y_test)

#------------------------------------------------------------------------------
# Example 3: XGBoost
#------------------------------------------------------------------------------
# Instantiate model
xgb = MLRegressor(estimator="XGBRegressor",
                  max_n_models=2)

# Fit
xgb.fit(X=X_train, y=y_train)

# Predict and score
xgb.score(X=X_test, y=y_test)

#------------------------------------------------------------------------------
# Example 4: LightGBM
#------------------------------------------------------------------------------
# Instantiate model
lgbm = MLRegressor(estimator="LGBMegressor",
                  max_n_models=2)

# Fit
lgbm.fit(X=X_train, y=y_train)

# Predict and score
lgbm.score(X=X_test, y=y_test)

#------------------------------------------------------------------------------
# Example 5: Neural Nets
#------------------------------------------------------------------------------
# Instantiate model
nn = MLRegressor(estimator="MLPRegressor",
                  max_n_models=2)

# Fit
nn.fit(X=X_train, y=y_train)

# Predict and score
nn.score(X=X_test, y=y_test)

#------------------------------------------------------------------------------
# Example 6: LassoCV/RidgeCV/ElasticNetCV (native scikit-learn implementation)
#------------------------------------------------------------------------------
# Instantiate model
penalized = MLRegressor(estimator="LassoCV")

# Fit
penalized.fit(X=X_train, y=y_train)

# Predict and score
penalized.score(X=X_test, y=y_test)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlregression-0.1.1.tar.gz (21.6 kB view details)

Uploaded Source

Built Distribution

mlregression-0.1.1-py3-none-any.whl (23.0 kB view details)

Uploaded Python 3

File details

Details for the file mlregression-0.1.1.tar.gz.

File metadata

  • Download URL: mlregression-0.1.1.tar.gz
  • Upload date:
  • Size: 21.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for mlregression-0.1.1.tar.gz
Algorithm Hash digest
SHA256 1d3b67d388774d74ca4dbffb56381c626977dc96dc65e6baae0a2cc87b6866e7
MD5 efe52f30af705fca0aaa7efe0b1a8345
BLAKE2b-256 09a544648997d7f01a600d329052530eb39fce9d0b472dd4e25e5b908234e365

See more details on using hashes here.

File details

Details for the file mlregression-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: mlregression-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 23.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for mlregression-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 81b989efdb6b364b62fbb1462371bf5972135e7e1744a90b8d8f5c6b733b2924
MD5 56eaeeee118684f3d1d4eda6d56e0a6a
BLAKE2b-256 10772512012a48ba31e24d81a06eaa9359b6c9db2d4aa6afbc35ce12587a8a99

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page