Machine learning regression off-the-shelf
Project description
*** ATTENTION ***
Don't immidiately run pip install mlregression
. See Section Installation.
Machine learning regression (mlregression)
Machine Learning Regression (mlregrresion) is an off-the-shelf implementation of the most popular ML methods that automatically takes care of fitting and parameter tuning.
Currently, the fully implemented models include:
- Ensemble trees (Random forests, XGBoost, LightGBM, GradientBoostingRegressor, ExtraTreesRegressor)
- Penalized regression (Ridge, Lasso, ElasticNet, Lars, LassoLars)
- Neural nets (Simple neural nets with 1-5 hidden layers, rely activation, and early stopping)
NB! When using penalized regressions, consider using the native CV-implementation from scikit-learn for speed, e.g., simply set estimator="LassoCV"
similar to Example 1.
Scikit-learn regressors (together with XGBoost
and LightGBM
) can be estimated by setting the estimator
-argument equal to the name (string) as in Example 1 (estimator="RandomForestRegressor"
).
Alternatively, one can provide an instance of an estimator, e.g., estimator=RandomForestRegressor()
. Again, this is fully automated for most Scikit-learn regressors, but for non-standard methods, one would have to provide a parameter grid as well, e.g., param_grid={...}
.
Please contact the authors below if you find any bugs or have any suggestions for improvement. Thank you!
Author: Nicolaj Søndergaard Mühlbach (n.muhlbach at gmail dot com, muhlbach at mit dot edu)
Code dependencies
This code has the following dependencies:
- Python >=3.6
- numpy >=1.19
- pandas >=1.3
- scikit-learn >=1
- scikit-learn-intelex >= 2021.3
- daal >= 2021.3
- daal4py >= 2021.3
- tbb >= 2021.4
- xgboost >=1.3
- lightgbm >=3.2
Installation
Before calling pip install mlregression
, we recommend using conda
to install the dependencies. In our experience, calling the following command works like a charm:
conda install -c conda-forge numpy">=1.19" pandas">=1.3" scikit-learn">=1" scikit-learn-intelex">=2021.3" daal">=2021.3" daal4py">=2021.3" tbb">=2021.4" xgboost">=1.3" lightgbm">=3.2" --force-reinstall
After this, install mlregression
by calling pip install mlregression
.
Note that without installing the dependensies, the package will not work. As of now, it does not work when installing the dependensies via pip install
. The reason is that we are using the Intel® Extension for Scikit-learn to massively speed up computations, but the dependensies are not properly installed via pip install
.
Usage
We demonstrate the use of mlregression below, using random forests, xgboost, and lightGBM as underlying regressors.
#------------------------------------------------------------------------------
# Libraries
#------------------------------------------------------------------------------
# Standard
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
# This library
from mlregression.mlreg import MLRegressor
#------------------------------------------------------------------------------
# Data
#------------------------------------------------------------------------------
# Generate data
X, y = make_regression(n_samples=500,
n_features=10,
n_informative=5,
n_targets=1,
bias=0.0,
coef=False,
random_state=1991)
X_train, X_test, y_train, y_test = train_test_split(X, y)
#------------------------------------------------------------------------------
# Example 1: Prediction
#------------------------------------------------------------------------------
# Specify any of the following estimators:
"""
"LinearRegression",
"RidgeCV", "LassoCV", "ElasticNetCV",
"RandomForestRegressor","ExtraTreesRegressor", "GradientBoostingRegressor",
"XGBRegressor", "LGBMegressor",
"MLPRegressor",
"""
# For instance, pick "RandomForestRegressor"
estimator = "RandomForestRegressor"
# Note that the 'estimator' may also be an instance of a class, e.g., RandomForestRegressor(), conditional on being imported first, e.g. from sklearn.ensemble import RandomForestRegressor
# Instantiate model and choose the number of parametrizations to examine using cross-validation ('max_n_models') and the number of cross-validation folds ('n_cv_folds')
mlreg = MLRegressor(estimator=estimator,
n_cv_folds=5,
max_n_models=2)
# Fit
mlreg.fit(X=X_train, y=y_train)
# Predict
y_hat = mlreg.predict(X=X_test)
# Access all the usual attributes
mlreg.best_score_
mlreg.best_estimator_
# Compute the score
mlreg.score(X=X_test,y=y_test)
#------------------------------------------------------------------------------
# Example 2: Cross-fitting
#------------------------------------------------------------------------------
# Instantiate model and choose the number of parametrizations to examine using cross-validation ('max_n_models'), the number of cross-validation folds ('n_cv_folds'), AND the number of cross-fitting folds ('n_cf_folds')
mlreg = MLRegressor(estimator=estimator,
n_cv_folds=5,
max_n_models=2,
n_cf_folds=2)
# Cross fit
mlreg.cross_fit(X=X_train, y=y_train)
# Extract in-sample that are estimated in an out-of-sample way (e.g., via cross-fitting)
y_hat = mlreg.y_pred_cf_
# Likewise, extract the residualized outcomes used in e.g., double machine learning. This is \tilde{Y} = Y - E[Y|X=x]
y_res = mlreg.y_res_cf_
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file mlregression-0.1.6.tar.gz
.
File metadata
- Download URL: mlregression-0.1.6.tar.gz
- Upload date:
- Size: 22.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4a0605eece734f97b268a4e9822f499a6e00c51c5490b4c1ebc7e2249802adf0 |
|
MD5 | e2b988732c095a3c89dad60a3e7ad388 |
|
BLAKE2b-256 | 8cbf3d2c428ac98ab2e97b049f8e1f36d85e9b45c75d56aaca1029d73c119c20 |
File details
Details for the file mlregression-0.1.6-py3-none-any.whl
.
File metadata
- Download URL: mlregression-0.1.6-py3-none-any.whl
- Upload date:
- Size: 23.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9aa64cdd421438617e27d63d9fdd7dbd13f727268024f52246727b0359071a39 |
|
MD5 | 143fe0cf55c9cb9fd2c7128f5b9d8123 |
|
BLAKE2b-256 | f6b4d76fbc84efa5fb18ea6908eaa037566e9dcf843384fb7418919655b6cc3d |