Skip to main content

Machine learning regression off-the-shelf

Project description

*** ATTENTION ***

Don't immidiately run pip install mlregression. See Section Installation.

Machine learning regression (mlregression)

Machine Learning Regression (mlregrresion) is an off-the-shelf implementation of the most popular ML methods that automatically takes care of fitting and parameter tuning.

Currently, the fully implemented models include:

  • Ensemble trees (Random forests, XGBoost, LightGBM, GradientBoostingRegressor, ExtraTreesRegressor)
  • Penalized regression (Ridge, Lasso, ElasticNet, Lars, LassoLars)
  • Neural nets (Simple neural nets with 1-5 hidden layers, rely activation, and early stopping)

NB! When using penalized regressions, consider using the native CV-implementation from scikit-learn for speed, e.g., simply set estimator="LassoCV" similar to Example 1.

Scikit-learn regressors (together with XGBoost and LightGBM) can be estimated by setting the estimator-argument equal to the name (string) as in Example 1 (estimator="RandomForestRegressor"). Alternatively, one can provide an instance of an estimator, e.g., estimator=RandomForestRegressor(). Again, this is fully automated for most Scikit-learn regressors, but for non-standard methods, one would have to provide a parameter grid as well, e.g., param_grid={...}.

Please contact the authors below if you find any bugs or have any suggestions for improvement. Thank you!

Author: Nicolaj Søndergaard Mühlbach (n.muhlbach at gmail dot com, muhlbach at mit dot edu)

Code dependencies

This code has the following dependencies:

  • Python >=3.6
  • numpy >=1.19
  • pandas >=1.3
  • scikit-learn >=1
  • scikit-learn-intelex >= 2021.3
  • daal >= 2021.3
  • daal4py >= 2021.3
  • tbb >= 2021.4
  • xgboost >=1.3
  • lightgbm >=3.2

Installation

Before calling pip install mlregression, we recommend using conda to install the dependencies. In our experience, calling the following command works like a charm:

conda install -c conda-forge numpy">=1.19" pandas">=1.3" scikit-learn">=1" scikit-learn-intelex">=2021.3" daal">=2021.3" daal4py">=2021.3" tbb">=2021.4" xgboost">=1.3" lightgbm">=3.2" --force-reinstall

After this, install mlregression by calling pip install mlregression. Note that without installing the dependensies, the package will not work. As of now, it does not work when installing the dependensies via pip install. The reason is that we are using the Intel® Extension for Scikit-learn to massively speed up computations, but the dependensies are not properly installed via pip install.

Usage

We demonstrate the use of mlregression below, using random forests, xgboost, and lightGBM as underlying regressors.

#------------------------------------------------------------------------------
# Libraries
#------------------------------------------------------------------------------
# Standard
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split

# This library
from mlregression.mlreg import MLRegressor

#------------------------------------------------------------------------------
# Data
#------------------------------------------------------------------------------
# Generate data
X, y = make_regression(n_samples=500,
                       n_features=10, 
                       n_informative=5,
                       n_targets=1,
                       bias=0.0,
                       coef=False,
                       random_state=1991)

X_train, X_test, y_train, y_test = train_test_split(X, y)

#------------------------------------------------------------------------------
# Example 1: Prediction
#------------------------------------------------------------------------------
# Specify any of the following estimators:
"""
"LinearRegression",
"RidgeCV", "LassoCV", "ElasticNetCV",
"RandomForestRegressor","ExtraTreesRegressor", "GradientBoostingRegressor",
"XGBRegressor", "LGBMegressor",
"MLPRegressor",
"""

# For instance, pick "RandomForestRegressor"
estimator = "RandomForestRegressor"
# Note that the 'estimator' may also be an instance of a class, e.g., RandomForestRegressor(), conditional on being imported first, e.g. from sklearn.ensemble import RandomForestRegressor

# Instantiate model and choose the number of parametrizations to examine using cross-validation ('max_n_models') and the number of cross-validation folds ('n_cv_folds')
mlreg = MLRegressor(estimator=estimator,
                    n_cv_folds=5,
                    max_n_models=2)

# Fit
mlreg.fit(X=X_train, y=y_train)

# Predict
y_hat = mlreg.predict(X=X_test)

# Access all the usual attributes
mlreg.best_score_
mlreg.best_estimator_

# Compute the score
mlreg.score(X=X_test,y=y_test)

#------------------------------------------------------------------------------
# Example 2: Cross-fitting
#------------------------------------------------------------------------------
# Instantiate model and choose the number of parametrizations to examine using cross-validation ('max_n_models'), the number of cross-validation folds ('n_cv_folds'), AND the number of cross-fitting folds ('n_cf_folds')
mlreg = MLRegressor(estimator=estimator,
                    n_cv_folds=5,
                    max_n_models=2,
                    n_cf_folds=2)

# Cross fit
mlreg.cross_fit(X=X_train, y=y_train)

# Extract in-sample that are estimated in an out-of-sample way (e.g., via cross-fitting)
y_hat = mlreg.y_pred_cf_

# Likewise, extract the residualized outcomes used in e.g., double machine learning. This is \tilde{Y} = Y - E[Y|X=x]
y_res = mlreg.y_res_cf_

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlregression-0.1.9.tar.gz (22.5 kB view details)

Uploaded Source

Built Distribution

mlregression-0.1.9-py3-none-any.whl (23.6 kB view details)

Uploaded Python 3

File details

Details for the file mlregression-0.1.9.tar.gz.

File metadata

  • Download URL: mlregression-0.1.9.tar.gz
  • Upload date:
  • Size: 22.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for mlregression-0.1.9.tar.gz
Algorithm Hash digest
SHA256 32fdd71cc786be6b581c14a6f772700b385e05da103ae2042c1265d45cdc2e7d
MD5 5c5e21c40784d51673338e1b2a98597b
BLAKE2b-256 6d56cc06b3e6312533742d36be6b5ff0d009d5738728f05feb89c2d17c246751

See more details on using hashes here.

File details

Details for the file mlregression-0.1.9-py3-none-any.whl.

File metadata

  • Download URL: mlregression-0.1.9-py3-none-any.whl
  • Upload date:
  • Size: 23.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for mlregression-0.1.9-py3-none-any.whl
Algorithm Hash digest
SHA256 b628eb722e1d047809aa66d8d8c860a691f7bc3c66854cdf41fe077e32014f89
MD5 05fd7900b3b0416fde26c3207a4dca50
BLAKE2b-256 fdcf78b576e6873d634cd8743ff50778639a2bccac2d8afd15190192962a4018

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page