Skip to main content

A scikit-learn implementation of BOOMER - an algorithm for learning gradient boosted multi-label classification rules

Project description

BOOMER - Gradient Boosted Multi-Label Classification Rules

License: MIT PyPI version Documentation Status

This software package provides an implementation of BOOMER - an algorithm for learning gradient boosted multi-label classification rules that integrates with the popular scikit-learn machine learning framework.

The goal of multi-label classification is the automatic assignment of sets of labels to individual data points, for example, the annotation of text documents with topics. The BOOMER algorithm uses gradient boosting to learn an ensemble of rules that is built with respect to a given multivariate loss function. To provide a versatile tool for different use cases, great emphasis is put on the efficiency of the implementation. To ensure its flexibility, it is designed in a modular fashion and can therefore easily be adjusted to different requirements.

References

The algorithm was first published in the following paper. A preprint version is publicly available here.

Michael Rapp, Eneldo Loza Mencía, Johannes Fürnkranz Vu-Linh Nguyen and Eyke Hüllermeier. Learning Gradient Boosted Multi-label Classification Rules. In: Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases (ECML-PKDD), 2020, Springer.

If you use the algorithm in a scientific publication, we would appreciate citations to the mentioned paper. An overview of publications that are concerned with the BOOMER algorithm, together with information on how to cite them, can be found in the section References of the documentation.

Features

The algorithm that is provided by this project currently supports the following core functionalities to learn an ensemble of boosted classification rules:

  • Different label-wise or example-wise loss functions can be minimized during training (optionally using L1 or L2 regularization).
  • The rules may predict for a single label or for all labels (which enables to model local label dependencies).
  • When learning a new rule, random samples of the training examples, features or labels may be used (including different techniques such as sampling with or without replacement or stratification methods).
  • The impact of individual rules on the ensemble can be controlled using shrinkage.
  • Hyper-parameters that provide fine-grained control over the specificity/generality of rules are available.
  • The conditions of rules can be pruned based on a hold-out set.
  • The algorithm can natively handle numerical, ordinal and nominal features (without the need for pre-processing techniques such as one-hot encoding).
  • The algorithm is able to deal with missing feature values, i.e., occurrences of NaN in the feature matrix.
  • Different strategies for prediction, which can be tailored to the used loss function, are available.

In addition, the following features that may speed up training or reduce the memory footprint are currently implemented:

  • Approximate methods for evaluating potential conditions of rules, based on unsupervised binning methods, can be used.
  • Gradient-based label binning (GBLB) can be used to assign the available labels to a limited number of bins. The use of label binning may speed up training significantly when using rules that predict for multiple labels to minimize a non-decomposable loss function.
  • Dense or sparse feature matrices can be used for training and prediction. The use of sparse matrices may speed up training significantly on some data sets.
  • Dense or sparse label matrices can be used for training. The use of sparse matrices may reduce the memory footprint in case of large data sets.
  • Dense or sparse matrices can be used to store predictions. The use of sparse matrices may reduce the memory footprint in case of large data sets.
  • Multi-threading can be used to parallelize the evaluation of a rule's potential refinements across multiple CPU cores.

Documentation

An extensive user guide, as well as an API documentation for developers, is available at https://mlrl-boomer.readthedocs.io. If you are new to the project, you probably want to read about the following topics:

A collection of benchmark datasets that are compatible with the algorithm are provided in a separate repository.

For an overview of changes and new features that have been included in past releases, please refer to the changelog.

License

This project is open source software licensed under the terms of the MIT license. We welcome contributions to the project to enhance its functionality and make it more accessible to a broader audience. A frequently updated list of contributors is available here.

All contributions to the project and discussions on the issue tracker are expected to follow the code of conduct.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mlrl_boomer-0.8.1-cp310-cp310-win_amd64.whl (321.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

mlrl_boomer-0.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

mlrl_boomer-0.8.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

mlrl_boomer-0.8.1-cp310-cp310-macosx_10_9_x86_64.whl (950.8 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

mlrl_boomer-0.8.1-cp39-cp39-win_amd64.whl (321.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

mlrl_boomer-0.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

mlrl_boomer-0.8.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

mlrl_boomer-0.8.1-cp39-cp39-macosx_10_9_x86_64.whl (950.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

mlrl_boomer-0.8.1-cp38-cp38-win_amd64.whl (321.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

mlrl_boomer-0.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

mlrl_boomer-0.8.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

mlrl_boomer-0.8.1-cp38-cp38-macosx_10_9_x86_64.whl (950.8 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

mlrl_boomer-0.8.1-cp37-cp37m-win_amd64.whl (321.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

mlrl_boomer-0.8.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

mlrl_boomer-0.8.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

mlrl_boomer-0.8.1-cp37-cp37m-macosx_10_9_x86_64.whl (950.8 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file mlrl_boomer-0.8.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: mlrl_boomer-0.8.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 321.9 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for mlrl_boomer-0.8.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6e01484c650a009c4f317a5c239eb219470c4aac05e9ecd3b02d6bb2dfa7f90d
MD5 23c2f55889e403db3dc5a0637d6bd639
BLAKE2b-256 326d166cd96abe5259576d2a6adae33ba26123254ea65c5388b3da4953467883

See more details on using hashes here.

File details

Details for the file mlrl_boomer-0.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: mlrl_boomer-0.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.22.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/18.0.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.8.10

File hashes

Hashes for mlrl_boomer-0.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2bde2bbb97f50d3cbe39866d817cb22b93fa3b25c7d84ef44758179db98ab6dc
MD5 6ec931d8cc2b2b2c6c9202871b2b0e50
BLAKE2b-256 12bebdae208ee7f146c344fce6e92327da39274576fb3e3eddec2852c674c328

See more details on using hashes here.

File details

Details for the file mlrl_boomer-0.8.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: mlrl_boomer-0.8.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.22.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/18.0.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.8.10

File hashes

Hashes for mlrl_boomer-0.8.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e6c67e79b33a8a8218795d2efd7fecbafab4ea9cb0f0dd0736b0b9d059863114
MD5 b0a5c5e74237ab4622b64d2b80f9cb4a
BLAKE2b-256 c6adaf035a99a2b9321d53ffffb86a9fd183e923a59f8e9dd1695713056b74a7

See more details on using hashes here.

File details

Details for the file mlrl_boomer-0.8.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: mlrl_boomer-0.8.1-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 950.8 kB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.0

File hashes

Hashes for mlrl_boomer-0.8.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b5a5beacc17cd253c7608a6500baa7b999a5114bab4c23ea7b6b7432196b88f5
MD5 95eb0645010f1558957c7395ac25e38d
BLAKE2b-256 f44e2e620ef4adabe3b02e51d4518d429827a0a268b229f20006c80f29545a94

See more details on using hashes here.

File details

Details for the file mlrl_boomer-0.8.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: mlrl_boomer-0.8.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 321.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for mlrl_boomer-0.8.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a268ab099b2826e92c93df23713ec94754a1c9d093004b1e562cccc8fa0a27ed
MD5 c8a8aefdeaf6450aae0570de9ebb9d6f
BLAKE2b-256 7bb084f60c1073d2ef86c253b4c9f67341410e805c535a50a75cc54ebf7abe10

See more details on using hashes here.

File details

Details for the file mlrl_boomer-0.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: mlrl_boomer-0.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.22.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/18.0.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.8.10

File hashes

Hashes for mlrl_boomer-0.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 59ca11293b2c62251a5bdf4a59f4ea8e75e0f8dceb838901a4bd9bf8a85a0d72
MD5 4455909aea48cd6009008be90d513d1b
BLAKE2b-256 d3c615a72110b51054b12cecb9ab86b8c9a63c3297136c31b051ee192f648fb5

See more details on using hashes here.

File details

Details for the file mlrl_boomer-0.8.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: mlrl_boomer-0.8.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.22.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/18.0.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.8.10

File hashes

Hashes for mlrl_boomer-0.8.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ee6d08d6900b7e21d389d8e7e1ea64e3ea31038441ed126d9d95d28c41b86336
MD5 b320c9f92137d866c1e1780da9719512
BLAKE2b-256 438f0f9388f6a4dc0083fd8078cf0545927e770cd92ef8154b1a749dc6a04671

See more details on using hashes here.

File details

Details for the file mlrl_boomer-0.8.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: mlrl_boomer-0.8.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 950.8 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.0

File hashes

Hashes for mlrl_boomer-0.8.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 53dfca61ac468d338f73ffe9aecdbf305ea2000f63a028dab2a5129b8b6060d1
MD5 ffed8abd6187ba0ddcc7c83314816e3b
BLAKE2b-256 82f8ff3bd17be003651a8a96dd7fc32100731035011c36abb0325be6a2b1d62e

See more details on using hashes here.

File details

Details for the file mlrl_boomer-0.8.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: mlrl_boomer-0.8.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 321.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for mlrl_boomer-0.8.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4b77d89d3c001cf69a0e2e1f96b14d544fb22e27d080167c84e523e9457d3d4b
MD5 004a11e636532a7e278fd6de35171727
BLAKE2b-256 e60bf48bcdcb052a30f91674e082198b09e95168be153e4cbf2286b00e1e1ac6

See more details on using hashes here.

File details

Details for the file mlrl_boomer-0.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: mlrl_boomer-0.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.22.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/18.0.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.8.10

File hashes

Hashes for mlrl_boomer-0.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e7be803bf90174dbe23c484fc3133e5046f7e381d55475f28f7a03568d9661a8
MD5 4cfd0efe44c1193325fb3306114cc9b6
BLAKE2b-256 6a3bbca48820b063a220c4c7f5cb26372e1a97c4da4a371c06c6e05ad7a593dc

See more details on using hashes here.

File details

Details for the file mlrl_boomer-0.8.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: mlrl_boomer-0.8.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.22.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/18.0.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.8.10

File hashes

Hashes for mlrl_boomer-0.8.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e757a77d06276d6fb4e72e96265b70663251f7eb092772aef21bdd3b37390292
MD5 512e701c2a9e6f735ba7f83d31875f47
BLAKE2b-256 5f5d2323a1619cb36e07e0ddf0086ae5a7f3b1f191e97706185abe7aae7eccef

See more details on using hashes here.

File details

Details for the file mlrl_boomer-0.8.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: mlrl_boomer-0.8.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 950.8 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.0

File hashes

Hashes for mlrl_boomer-0.8.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 936a167743fcce9c731f19af43ba26ad57ac25059f204206cc3aad1074a90dfc
MD5 13928ee41c523fe5581b5ac3bd1ed1c8
BLAKE2b-256 43f30e3d136b21aebb647908f2c5108eae763b3048b87f42ab365cd802682477

See more details on using hashes here.

File details

Details for the file mlrl_boomer-0.8.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: mlrl_boomer-0.8.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 321.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for mlrl_boomer-0.8.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 35c32e8e8e1903e82711bdb1a6315d4bcf3bba78fba8d0640e931bc72149210e
MD5 dd2a8f129b1a50f8eb9de40d57c8d043
BLAKE2b-256 68e58f21fd589507ee96539dff8159057f1f9d94c4b9ff003e3feed6d008e6e8

See more details on using hashes here.

File details

Details for the file mlrl_boomer-0.8.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: mlrl_boomer-0.8.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.22.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/18.0.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.8.10

File hashes

Hashes for mlrl_boomer-0.8.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 928ae919af07ecd64b9a663e3f5263ee25d8f6552866886a9c278ed730445f7d
MD5 2ada01ecdde61e6aa37aa46c80bac1ef
BLAKE2b-256 1a56607e0a9d67866871ff511610d4b9945d53db9bb50e83b4a264767e32ed7f

See more details on using hashes here.

File details

Details for the file mlrl_boomer-0.8.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: mlrl_boomer-0.8.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.22.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/18.0.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.8.10

File hashes

Hashes for mlrl_boomer-0.8.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d1ec47571dc4cf04bf3bed8950d2a557f0fd93f856dd5f5a72ff31e0953f6387
MD5 b1a6997d2ab61891f4b59e790321a731
BLAKE2b-256 6364380c85ee80694a8536e4f534625c7268debfc0bbe6e24ab6302a73d518eb

See more details on using hashes here.

File details

Details for the file mlrl_boomer-0.8.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: mlrl_boomer-0.8.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 950.8 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.0

File hashes

Hashes for mlrl_boomer-0.8.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 719826cffa5913a8663505e2ec01292bd247c068de6debc45ff5f05b96b2c2ec
MD5 d61466d3949f6445d1db9c2528ae2279
BLAKE2b-256 2b2d8cb6e7a09f1d011cd1c3952e51789678c67321a3284488798ef20e7a8676

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page