Skip to main content

XGBoost runtime for MLServer

Project description

XGBoost runtime for MLServer

This package provides a MLServer runtime compatible with XGBoost.

Usage

You can install the runtime, alongside mlserver, as:

pip install mlserver mlserver-xgboost

For further information on how to use MLServer with XGBoost, you can check out this worked out example.

XGBoost Artifact Type

The XGBoost inference runtime will expect that your model is serialised via one of the following methods:

Extension Docs Example
*.json JSON Format booster.save_model("model.json")
*.ubj Binary JSON Format booster.save_model("model.ubj")
*.bst (Old) Binary Format booster.save_model("model.bst")
By default, the runtime will look for a file called `model.[json | ubj | bst]`.
However, this can be modified through the `parameters.uri` field of your
{class}`ModelSettings <mlserver.settings.ModelSettings>` config (see the
section on [Model Settings](../../docs/reference/model-settings.md) for more
details).

```{code-block} json
---
emphasize-lines: 3-5
---
{
  "name": "foo",
  "parameters": {
    "uri": "./my-own-model-filename.json"
  }
}
```

Content Types

If no content type is present on the request or metadata, the XGBoost runtime will try to decode the payload as a NumPy Array. To avoid this, either send a different content type explicitly, or define the correct one as part of your model's metadata.

Model Outputs

The XGBoost inference runtime exposes a number of outputs depending on the model type. These outputs match to the predict and predict_proba methods of the XGBoost model.

Output Returned By Default Availability
predict Available on all XGBoost models.
predict_proba Only available on non-regressor models (i.e. XGBClassifier models).

By default, the runtime will only return the output of predict. However, you are able to control which outputs you want back through the outputs field of your {class}InferenceRequest <mlserver.types.InferenceRequest> payload.

For example, to only return the model's predict_proba output, you could define a payload such as:

---
emphasize-lines: 10-12
---
{
  "inputs": [
    {
      "name": "my-input",
      "datatype": "INT32",
      "shape": [2, 2],
      "data": [1, 2, 3, 4]
    }
  ],
  "outputs": [
    { "name": "predict_proba" }
  ]
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlserver_xgboost-1.6.1.tar.gz (7.1 kB view details)

Uploaded Source

Built Distribution

mlserver_xgboost-1.6.1-py3-none-any.whl (8.0 kB view details)

Uploaded Python 3

File details

Details for the file mlserver_xgboost-1.6.1.tar.gz.

File metadata

  • Download URL: mlserver_xgboost-1.6.1.tar.gz
  • Upload date:
  • Size: 7.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.14 Linux/6.5.0-1025-azure

File hashes

Hashes for mlserver_xgboost-1.6.1.tar.gz
Algorithm Hash digest
SHA256 69717157deee2e302c9d7ec6712437f6c4f687faaea53f8126b8fe3daee549d9
MD5 1cf578796c5961a6846df019084697c0
BLAKE2b-256 34437741dddb5babacce5f2e1638cabed3b8009dfc492757c18ccbe2f35adb46

See more details on using hashes here.

File details

Details for the file mlserver_xgboost-1.6.1-py3-none-any.whl.

File metadata

  • Download URL: mlserver_xgboost-1.6.1-py3-none-any.whl
  • Upload date:
  • Size: 8.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.14 Linux/6.5.0-1025-azure

File hashes

Hashes for mlserver_xgboost-1.6.1-py3-none-any.whl
Algorithm Hash digest
SHA256 d917d1dfbd80e76cb26fb7c1a84ee4489a09c60e434283c7f000191e37b13474
MD5 6fb6079d2e18fa624b09a1f0b12a6239
BLAKE2b-256 111f8eeab40df4120bdd36da45a0a067358e8ecdf8ac6dbd598843ffbbd47096

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page