Skip to main content

Machine Learning for Machine Learning

Project description

[ML]² : Machine Learning for Machine Learning

https://circleci.com/gh/mlsquare/mlsquare/tree/dev.svg?style=svg https://api.codacy.com/project/badge/Coverage/5b23c72bf17246e6b3df610a798f8935 https://mybinder.org/badge_logo.svg

ML Square is a python library that utilises deep learning techniques to

  • Enable interoperability between existing standard machine learning frameworks.

  • Provide explainability as a first-class function.

  • Make ML self learnable.

Getting Started!

Setting up mlsquare is simple and easy

  1. Create a Virtual Environment(optional)

virtualenv ~/venv
source ~/venv/bin/activate
  1. Install mlsquare package

pip install mlsquare
  1. Import dope function from mlsquare and pass the sklearn model object

>>> from mlsquare import dope
>>> from sklearn.linear_model import LinearRegression
>>> from sklearn.preprocessing import StandardScaler
>>> from sklearn.model_selection import train_test_split
>>> import pandas as pd
>>> from sklearn.datasets import load_diabetes

>>> model = LinearRegression()
>>> diabetes = load_diabetes()

>>> X = diabetes.data
>>> sc = StandardScaler()
>>> X = sc.fit_transform(X)
>>> Y = diabetes.target
>>> x_train, x_test, y_train, y_test =
    train_test_split(X, Y, test_size=0.60, random_state=0)

>>> m = dope(model)

>>> # All sklearn operations can be performed on m, except that the underlying implementation uses DNN
>>> m.fit(x_train, y_train)
>>> m.score(x_test, y_test)

Tutorial

For a comprehensive tutorial please do checkout this link

Contribute

To get started with contributing, refer our devoloper guide here

For detailed documentation refer documentation

We would love to hear your feedback. Drop us a mail at info@mlsquare.org

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlsquare-0.2.2.1.tar.gz (2.0 MB view details)

Uploaded Source

Built Distribution

mlsquare-0.2.2.1-py2.py3-none-any.whl (33.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file mlsquare-0.2.2.1.tar.gz.

File metadata

  • Download URL: mlsquare-0.2.2.1.tar.gz
  • Upload date:
  • Size: 2.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for mlsquare-0.2.2.1.tar.gz
Algorithm Hash digest
SHA256 f2bbfca061470e67e9bd5e57d9c86f972f339f2bd62b2e93ebce81a810f17648
MD5 ad6be848bcfd5bdc722f316aa1d8807b
BLAKE2b-256 58719968b34f896f1d64d2582eba47df79bc5b650c7176b2bc987ebbf369b959

See more details on using hashes here.

File details

Details for the file mlsquare-0.2.2.1-py2.py3-none-any.whl.

File metadata

  • Download URL: mlsquare-0.2.2.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 33.5 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for mlsquare-0.2.2.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 023b471e6b7b1a003a4228f2057250929c965233ca163108e1271339d694a0bc
MD5 4f9ab8b4471358558fa4dacb889d6ef9
BLAKE2b-256 fa1d0d9b9a9c28aa69d8364ccd5995fe90dc565c8f37bb2e8b4b91e661b3a3ea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page