Skip to main content

A Common Language for EO Machine Learning Data

Project description

mlstac

A Common Language for EO Machine Learning Data

import mlstac

# Read the data online
path = "https://huggingface.co/datasets/JulioContrerasH/prueba1/resolve/main/images_2000.mlstac"
metadata = mlstac.core.load_metadata(path)
data = mlstac.core.load_data(metadata[0:4])
data.shape

# Read the data locally
path = "/home/cesar/Downloads/images_2000.mlstac"
dataset = mlstac.core.load_metadata(path)
data = mlstac.core.load_data(dataset[0:4])

# From mlstac to GEOTIFF
import rasterio as rio
path = "https://huggingface.co/datasets/JulioContrerasH/prueba1/resolve/main/images_2000.mlstac"
metadata = mlstac.core.load_metadata(path)
data, metadata = mlstac.core.load_data(metadata[0:1], save_metadata_datapoint=True)[0]
with rio.open("data.tif", "w", **metadata) as dst:
    dst.write(data)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlstac-0.1.3.tar.gz (23.4 kB view details)

Uploaded Source

Built Distribution

mlstac-0.1.3-py3-none-any.whl (29.3 kB view details)

Uploaded Python 3

File details

Details for the file mlstac-0.1.3.tar.gz.

File metadata

  • Download URL: mlstac-0.1.3.tar.gz
  • Upload date:
  • Size: 23.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/7.0.1 keyring/24.3.1 pkginfo/1.9.6 readme-renderer/34.0 requests-toolbelt/1.0.0 requests/2.32.3 rfc3986/1.5.0 tqdm/4.66.1 urllib3/2.2.1 CPython/3.10.12

File hashes

Hashes for mlstac-0.1.3.tar.gz
Algorithm Hash digest
SHA256 1b246e0ac453c7c23edda67e733daf7317dc6bcb11897d5e6ce4900c6a594a69
MD5 87bf71c399d3a96b358e534b5c44567a
BLAKE2b-256 2b4cdfd94925db86b655688ab80e1252fc58594cb6479d4b1f8d505109c64102

See more details on using hashes here.

File details

Details for the file mlstac-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: mlstac-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 29.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/7.0.1 keyring/24.3.1 pkginfo/1.9.6 readme-renderer/34.0 requests-toolbelt/1.0.0 requests/2.32.3 rfc3986/1.5.0 tqdm/4.66.1 urllib3/2.2.1 CPython/3.10.12

File hashes

Hashes for mlstac-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 7564a42199b2f7c8f7dd4d85db68b53cbc52e9be8d84b824ce2a3506e8a2a21e
MD5 d31aeb4b259a0c21a7d3e9b4efab188f
BLAKE2b-256 313c0244176fc4e3f47433410f051d4cf7c47d336a59e2de94c2f9cfeff73f94

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page