Skip to main content

A Common Language for EO Machine Learning Data

Project description

mlstac

A Common Language for EO Machine Learning Data

import mlstac

# Read the data online
path = "https://huggingface.co/datasets/JulioContrerasH/prueba1/resolve/main/images_2000.mlstac"
metadata = mlstac.core.load_metadata(path)
data = mlstac.core.load_data(metadata[0:4])
data.shape

# Read the data locally
path = "/home/cesar/Downloads/images_2000.mlstac"
dataset = mlstac.core.load_metadata(path)
data = mlstac.core.load_data(dataset[0:4])

# From mlstac to GEOTIFF
import rasterio as rio
path = "https://huggingface.co/datasets/JulioContrerasH/prueba1/resolve/main/images_2000.mlstac"
metadata = mlstac.core.load_metadata(path)
data, metadata = mlstac.core.load_data(metadata[0:1], save_metadata_datapoint=True)[0]
with rio.open("data.tif", "w", **metadata) as dst:
    dst.write(data)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlstac-0.1.4.tar.gz (23.2 kB view details)

Uploaded Source

Built Distribution

mlstac-0.1.4-py3-none-any.whl (29.4 kB view details)

Uploaded Python 3

File details

Details for the file mlstac-0.1.4.tar.gz.

File metadata

  • Download URL: mlstac-0.1.4.tar.gz
  • Upload date:
  • Size: 23.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/7.0.1 keyring/24.3.1 pkginfo/1.9.6 readme-renderer/34.0 requests-toolbelt/1.0.0 requests/2.32.3 rfc3986/1.5.0 tqdm/4.66.1 urllib3/2.2.1 CPython/3.10.12

File hashes

Hashes for mlstac-0.1.4.tar.gz
Algorithm Hash digest
SHA256 7817f982d12444bd83382c5fa0dd101a83b38205e1df76a4487376a99aee8026
MD5 80a8efb37e22fcaccbcb258019234f15
BLAKE2b-256 8d3f3e87ba30309e576f1804e5543099eda813595acaf60113ec132fa9b2556b

See more details on using hashes here.

File details

Details for the file mlstac-0.1.4-py3-none-any.whl.

File metadata

  • Download URL: mlstac-0.1.4-py3-none-any.whl
  • Upload date:
  • Size: 29.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/7.0.1 keyring/24.3.1 pkginfo/1.9.6 readme-renderer/34.0 requests-toolbelt/1.0.0 requests/2.32.3 rfc3986/1.5.0 tqdm/4.66.1 urllib3/2.2.1 CPython/3.10.12

File hashes

Hashes for mlstac-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 568292040a8b5867192407774417aeb12207548297b4b4f82a6d3c38d81fd1e0
MD5 69db050760f39af7d0e61d97e88533b3
BLAKE2b-256 463350580a7bae195bd6170681a46743c64bcdfc16a8af55e64d2db87ceeecc3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page