Skip to main content

MLSteam Model SDK

Project description

mlsteam-model-sdk

SDK for accessing MLSteam models

Setup

pip3 install mlsteam-model-sdk

To process encrypted model versions, install the Themis development package according to the official instrunctions. Debian/Ubuntu users have a handy installation method:

# for users that already have administrator privileges
mlsteam-model-cli install-themisdev

# for those that need privilege lifting
sudo mlsteam-model-cli install-themisdev

Usage

Initilize SDK

SDK needs to be initialized if you have not done so (replace the fields started with $):

mlsteam-model-cli init \
    --default_project_type=name \
    --default_project_val=$PROJECT_OWNER/$PROJECT_NAME

By default, the settings will be at $HOME/.mlsteam-model-sdk/cfg.ini.

If the program is running out of an MLSteam system, you may also need to setup api_token with this command instead, or by editing the api_token field in cfg.ini:

mlsteam-model-cli init \
    --api_token=$YOUR_API_TOKEN \
    --default_project_type=name \
    --default_project_val=$PROJECT_OWNER/$PROJECT_NAME

Downloading a model version with SDK

from mlsteam_model_sdk.sdk.model import Model

sdk_model = Model()
sdk_model.download_model_version(model_name='model_name',
                                 version_name='version_name')

You will need administrator privileges to handle encrypted model versions. For this case, either run the Python program with sudo, or enter your password in a sudo prompt during program execution. Administrator privileges are not required when you only process non-encrypted model versions.

By default, the model version will be downloaded at $HOME/.mlsteam-model-sdk/models/download/.

This loads a model version and makes prediction:

mv = sdk_model.load_model_version(model_name='model_name',
                                  version_name='version_name')
outputs = mv.predict(inputs)

Importing a model version with CLI

This example assumes the following files are locally available:

  1. model version package (required)
  2. package encryption key (required only for encrypted packages)

You will need administrator privileges to import an encrypted model version, as mentioned in the previous example.

To import a package:

# for non-encrypted packages
mlsteam-model-cli mv import-local -f $PACKAGE_FILE_PATH

# for encrypted packages
mlsteam-model-cli mv import-local -f $PACKAGE_FILE_PATH -k $ENCKEY_FILE_PATH

By default, the model and version names to register are read from the package manifest. You may customize these settings with the --model_name and --version_name options.

If the operation is successful, you will find the imported pakage in local model registry:

mlsteam-model-cli mv list-local
   muuid     model_name       vuuid        version_name     puuid     packaged   encrypted      download_time
 ================================================================================================================
 __local__   ...          local-........   ...            __local__   1          ...            .....

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mlsteam_model_sdk-0.4.4-cp311-none-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (138.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

mlsteam_model_sdk-0.4.4-cp310-none-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (134.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

mlsteam_model_sdk-0.4.4-cp39-none-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (141.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

mlsteam_model_sdk-0.4.4-cp38-none-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (147.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

mlsteam_model_sdk-0.4.4-cp37-none-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (134.6 kB view details)

Uploaded CPython 3.7 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

mlsteam_model_sdk-0.4.4-cp36-none-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (132.4 kB view details)

Uploaded CPython 3.6 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

File details

Details for the file mlsteam_model_sdk-0.4.4-cp311-none-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlsteam_model_sdk-0.4.4-cp311-none-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fa9bcb50853ebe854c1433ccd12e85d04af2610969e751c5843901919b9138aa
MD5 26589db26846d86bf02e531fdf3642c2
BLAKE2b-256 3b0646ad7bdd0ebc3ebcd4882992f9383753574a4bbf618c622b4bccf070817e

See more details on using hashes here.

File details

Details for the file mlsteam_model_sdk-0.4.4-cp310-none-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlsteam_model_sdk-0.4.4-cp310-none-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1227caafdc38abdd57ea94a1817305e36da4e9c316e036e9b00c4987fa5f1d02
MD5 7fe4d18218dc613293d7342d66fda270
BLAKE2b-256 cfa1e16406668ead50c110c73d4a6cd898d4149a84d6244da2cc10c90282f4ff

See more details on using hashes here.

File details

Details for the file mlsteam_model_sdk-0.4.4-cp39-none-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlsteam_model_sdk-0.4.4-cp39-none-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 348f8488bfd26c147efe1b620623c995d45a9de6f413b1baff5da10b63e09e68
MD5 a6d5daee246bfe6c4b107ce22f0e2f10
BLAKE2b-256 1716907359a51ea9d986d30c094dd1843e9c37382ed74abce174853b1950a006

See more details on using hashes here.

File details

Details for the file mlsteam_model_sdk-0.4.4-cp38-none-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlsteam_model_sdk-0.4.4-cp38-none-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b9c88a906d2c923d67c746e3c3c6e529a015a76b436608928468901780b7a6e1
MD5 7d3f9077ce6063e57febae689ffd210f
BLAKE2b-256 5bc8fc1dd4578e9bb6834950ba34c526090ff76401f394d13a66dfa9d627c2d5

See more details on using hashes here.

File details

Details for the file mlsteam_model_sdk-0.4.4-cp37-none-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlsteam_model_sdk-0.4.4-cp37-none-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e65bf2b8d43e202a0c2b51ef99cfadda51a2c0a5071387cba5c1d7c0f1faf14a
MD5 ff3ad1eaef5bb47c79e7599cef0c4868
BLAKE2b-256 672a04f96fa1a2e09e9b2a78fb888e69aa2a885609a35348966875c784b06546

See more details on using hashes here.

File details

Details for the file mlsteam_model_sdk-0.4.4-cp36-none-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlsteam_model_sdk-0.4.4-cp36-none-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5ddae83eb0112e4b559ba6bb9160cbd13f436fc3c64b075c7a4f8e6599d6afcc
MD5 f31af5cb11e56b85e9cbe1a8570b7369
BLAKE2b-256 5d6a637308d7783bc1c30f6fb2e0658b1062f72da6743ea3d903dad092cd648d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page