This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description


Create your specific environment (with conda)

An empty one

conda create --name datasc python

From a existing one

You can check the list of current envs as follow

conda info --list

You can then clone the root env like this

conda create --name datasc --clone root

Activate your environment

source activate datasc

Install the mltoolkit library

From Binstar (

conda install -c -c mltoolkit

From source

conda install conda-build
git clone
cd mltoolkit/_build
conda build .
conda install --use-local mltoolkit


Have a look to the examples folder




The official documentation.

Release History

Release History


This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS HPE HPE Development Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting