Monitor ML models in production
Project description
Mltrics
Official command line utility to use Mltrics API programmatically.
We help businesses evaluate, compare, and monitor machine learning models in production. Therefore, identify failure cases and take action immediately.
Installation
Mltrics and its required dependencies can be installed using pip:
pip install mltrics
Usage
Once mltrics package is installed, check out the following usage documentation:
Authenticate to mltrics platform
from mltrics.mltrics import MltricsClient
import getpass
username = input("Enter username: ")
password = getpass.getpass(prompt='Enter password: ')
client = MltricsClient(username=username, password=password, env="prod")
Update user profile
organization, full_name = "<your-organization-name>", "<Your name>"
client.update_user_profile(organization=organization, full_name=full_name)
Create model and upload predictions
Create a baseline model
baseline_model_id, baseline_model_name = 'nn_iter_10k', 'Neural network (trained for 10K iters)'
baseline_model = client.create_model(baseline_model_id, baseline_model_name)
print(baseline_model)
Update model details
baseline_model_new_name = "Neural network (trained for 20K iters)"
updated_model = client.update_model_details(baseline_model_id, baseline_model_new_name)
print(updated_model)
Get uploaded models
models = client.get_models()
models
Upload predictions for model
baseline_preds = [
{
'pred_class': 'dog',
'label_class': None,
'model_id': baseline_model_id,
'image_id': 'img1',
'image_url': 'https://mltrics.s3.us-west-2.amazonaws.com/datasets/cats_vs_dogs/Cat/10896.jpg',
'pred_file': None,
'predictions': {},
},
]
response = client.upload_model_predictions(baseline_model_id, baseline_preds)
print(response)
See all uploaded predictions
predictions = client.get_model_predictions(baseline_model_id)
predictions
Create candidate model and upload predictions for candidate model
### Create candidate model and upload predictions
candidate_model_id, candidate_model_name = "nn_50k_iter", "Neural Network (50K iter)"
candidate_model = client.create_model(candidate_model_id, candidate_model_name)
candidate_preds = [
{
'pred_class': 'cat',
'label_class': None,
'model_id': candidate_model_id,
'image_id': 'img1',
'image_url': 'https://mltrics.s3.us-west-2.amazonaws.com/datasets/cats_vs_dogs/Cat/10896.jpg',
'pred_file': None,
'predictions': {},
},
]
response = client.upload_model_predictions(candidate_model_id, candidate_preds)
print(response)
Get model comparison between baseline and candidate model
comparison_results = client.compare_model_predictions(baseline_model_id, candidate_model_id)
print(comparison_results)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
mltrics-0.1.4.tar.gz
(11.4 kB
view details)
File details
Details for the file mltrics-0.1.4.tar.gz
.
File metadata
- Download URL: mltrics-0.1.4.tar.gz
- Upload date:
- Size: 11.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.5.0 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 778a0b5c2c7ca518a29096fd7fb9a9cd6870f607913806228b7bdf5dabacf6d1 |
|
MD5 | de4516fc501eb58207b2e341867e1053 |
|
BLAKE2b-256 | c04fc95e179ebf4e244188cf2f8520799ff5b59c369fad8b041f0d3fd02998de |