MLVizLib is a powerful package for generating quick, insightful, and stylish visualizations for machine learning.
Project description
MLVizLib (Machine Learning Visualization Library) is a powerful library for generating quick, insightful, and stylish visualizations for machine learning (ML). Our goal is to enhance the ML workflow by providing insightful visualizations with minimum effort.
- Documentation: (COMING SOON) https://mlvizlib.readthedocs.io.
NOTE: This project is in early stage development, and can thus go trough major changes.
Install
MLVizLib can be installed from PyPI:
pip install mlvizlib
Features
- Confusion Matrix Visualization
note
More coming soon.
Confusion Matrix Visualization example
import matplotlib.pyplot as plt
from mlvizlib.classification import confusion_matrix
# example data
eg_y_true = [2,0,1,0,2,0,1,2,0,0,2,0,1,1,0,1,1,0,0,0,0,2,2]
eg_y_pred = [2,0,0,0,2,0,1,2,1,0,2,2,1,1,0,2,1,0,1,0,0,1,2]
confusion_matrix(eg_y_true, eg_y_pred)
plt.show()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
mlvizlib-0.1.0.tar.gz
(17.6 kB
view details)
Built Distribution
File details
Details for the file mlvizlib-0.1.0.tar.gz
.
File metadata
- Download URL: mlvizlib-0.1.0.tar.gz
- Upload date:
- Size: 17.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 94890b577968a869cf202fce39af37571a98a687c7dc74311cb09fdc09373507 |
|
MD5 | fd0b520426602b429e8517d34212f33e |
|
BLAKE2b-256 | 973ebbc80a8f7e2318fbe543027ba39350fd53df37c086bdfbbbf10417981455 |
File details
Details for the file mlvizlib-0.1.0-py2.py3-none-any.whl
.
File metadata
- Download URL: mlvizlib-0.1.0-py2.py3-none-any.whl
- Upload date:
- Size: 8.8 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 768ca83ee24f09d1642b2f0eebeb4633c2ec50d0bf9cd26a7bd7021e580e0400 |
|
MD5 | 38ac74c62be3759e90e4c8a23288e41d |
|
BLAKE2b-256 | e9fad645b3aff14ef2313e8e4e9cd74254d06496fa6de53b681ecb715922b8e9 |