MM1 - Pytorch
Project description
MM1
PyTorch Implementation of the paper "MM1: Methods, Analysis & Insights from Multimodal LLM Pre-training".
img -> encoder -> connector -> llm -> tokens
install
pip3 install mm1-torch
usage
import torch
from mm1_torch.main import MM1
# Tensors
x = torch.randint(0, 100, (1, 512)) # Create a random tensor of shape (1, 512)
img = torch.randn(1, 3, 224, 224) # Create a random image tensor of shape (1, 3, 224, 224)
# Create a model
model = MM1(
dim=512, # Dimension of the input tensor
depth=12, # Number of transformer layers
heads=8, # Number of attention heads
dim_head=64, # Dimension of each attention head
dropout=0.1, # Dropout rate
num_experts=4, # Number of experts in mixture-of-experts
num_experts_per_tok=2, # Number of experts per token in mixture-of-experts
encoder_dim=512, # Dimension of the encoder output
encoder_depth=12, # Number of encoder transformer layers
encoder_heads=8, # Number of encoder attention heads
use_moe=True, # Whether to use mixture-of-experts
return_logits=True # Whether to return logits or probabilities
)
# Forward
out = model(x, img) # Forward pass through the model
print(out.shape) # Print the shape of the output tensor (torch.Size([2, 3, 512]))
print(out) # Print the output tensor
CAbstractor
import torch
from mm1_torch.main import CAbstractor
# Tensors
x = torch.randn(1, 100, 512)
# Create a model
model = CAbstractor(
dim=512,
depth=12,
heads=8,
)
# Forward
out = model(x)
print(out.shape)
License
MIT
Todo
- Implement the deformable attention
- Create a training script for Huggingface datasets
- Create unit tests for every module
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
mm1_torch-0.0.6.tar.gz
(6.6 kB
view details)
Built Distribution
File details
Details for the file mm1_torch-0.0.6.tar.gz
.
File metadata
- Download URL: mm1_torch-0.0.6.tar.gz
- Upload date:
- Size: 6.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.3.2 CPython/3.11.0 Darwin/23.3.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4f5d6cb67e51ada13401a42771f21488a5a78376a9ed763f49cae599539d38e3 |
|
MD5 | 6a8242775c2789b3710e65d1d28499d0 |
|
BLAKE2b-256 | f3bc8bd107f4e9fe4fd07d7e9e4df833a65ecb7a24edc8f9db61b367e1fde034 |
File details
Details for the file mm1_torch-0.0.6-py3-none-any.whl
.
File metadata
- Download URL: mm1_torch-0.0.6-py3-none-any.whl
- Upload date:
- Size: 6.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.3.2 CPython/3.11.0 Darwin/23.3.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fd23792bfa3604478f4ffd8b2d313cebf52acc9288e1c0e42377f0d4eade02fc |
|
MD5 | 2d4fcbc28549623cfb67410414960b79 |
|
BLAKE2b-256 | 2cfd475139b97e7736cd8dc3c2b0beb48f89f8ddef69bfdbc1197a5a67e58284 |