Skip to main content

MM1 - Pytorch

Project description

Multi-Modality

MM1

PyTorch Implementation of the paper "MM1: Methods, Analysis & Insights from Multimodal LLM Pre-training".

img -> encoder -> connector -> llm -> tokens 

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mm1_torch-0.0.1.tar.gz (6.7 kB view details)

Uploaded Source

Built Distribution

mm1_torch-0.0.1-py3-none-any.whl (7.1 kB view details)

Uploaded Python 3

File details

Details for the file mm1_torch-0.0.1.tar.gz.

File metadata

  • Download URL: mm1_torch-0.0.1.tar.gz
  • Upload date:
  • Size: 6.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.11.0 Darwin/23.3.0

File hashes

Hashes for mm1_torch-0.0.1.tar.gz
Algorithm Hash digest
SHA256 d83596e4133205d950641222d69dfafac9a62b53acb29dfc43ae386d0ba2ec53
MD5 3e1a7bf31cc95f785e565feddebe3bcc
BLAKE2b-256 12383a31d3fbb32b4815f3a97fe5635a3720afa75bb3e93602fd8ca9faee897e

See more details on using hashes here.

Provenance

File details

Details for the file mm1_torch-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: mm1_torch-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 7.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.11.0 Darwin/23.3.0

File hashes

Hashes for mm1_torch-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 4b36662b41f99630295d83109d88531e472c49a580a6d3a976e879742d3c477c
MD5 33cc94ff9f9268a68e7974b272f17abd
BLAKE2b-256 7cc280802003efc62efce8301c81b072241ec1c5058f18a721f08c12edda4f48

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page