Skip to main content

a tool for multimedia

Project description

mmanalysis

mmanalysis 是多媒体特征分析工具的库

安装

$ pip install mmanalyser

mmanalyser examples

AudioAnalyser

音频格式现在只支持16000HZ,单声道

from mmanalyser.audio_analyser import AudioAnalyser
aa = AudioAnalyser()

# 转化音频为16000HZ,单身道
# source_path 可以是视频,URL,音频
# desc_path 是生成文件的路径
aa.convert_to_wav(source_path='f0.mp4', desc_path='f0.wav'):

# 判断音频是否有效
# 返回label(True为有效) 和 0到1之间的数值(越靠近1,即越有效)。
aa.is_valid_audio('f0.wav')

# 判断长段音频是否为人声(大于5s)
# 返回0到1之间的值,越靠近1,即越有可能是人声
aa.is_human_voice('f0.wav')

# 判断音频片段是否为人声(3s-5s)
# 同上
aa.is_human_voice_snippet('f0.wav')

# 去掉静音片段,获取去掉静音片段的音频,同时也可以获得有声片段的时间区间和对应的音频,有声片段的时间总长
# 返回 文件列表  [去掉静音片段的音频地址,其余为有声片段的时间区间对应的音频]
#      有声片段时间区间
#      有声音频长度
#      音频长度
aa.delete_silence_snippet('f0.wav')

API

ExpressionAnalyser

class ExpressionAnalyser:
    '''
    表达能力分析器

    asr数据格式:{"pause_detection": [[3280, 3922], [7781, 8688]], "text_corrected":  [], "text":  [[[0, 1170], "领导你好,"],[[8940, 12250], "我在嘉兴,"], [[12250, 13490], "有两家造纸厂,"]]}
    '''

    def get_expression_score(self, asr, audio_path=None):
        '''
        获取表达能力分数

        Args:
            asr: asr结果
            audio_path:  音频地址

        Returns:
             dict: {
            'talk_speed': float,        // 语速
            'audio_clear': bool,        //声音是否清晰
            'mandarin_score': float,    //普通话标准程度
            'expression_score': float,  //表达能力分数
            }
        '''


    def get_talk_speed(self, asr):
        '''
        获取语速指标

        Args:
            asr: asr 结果
        Returns:
           float: 语速
        '''


    def get_mandarin_score(self, asr):
        '''
        获取普通话标准程度

        Args:
            asr: asr结果

        Returns:
            float: 普通话标准程度
        '''

    def get_audio_clear(self, asr, audio_path):
        '''
        获取声音是否清晰

        Args:
            asr: asr结果
            audio_path: 音频地址

        Returns:
            bool: 清晰返回true 不清晰返回false
        '''

EmotionAnalyser

class EmotionAnalyser:
    '''
    情绪分析器
    '''

    def get_emotion_global_distribution(self, emotion):
        """

        获取情绪的分布

        Args:
            emotion: [{"anger": 0.1, "neutral": 0.1, "disgust": 0.1, "fear": 0.005670338961718315, "happiness": 0.2 "sadness": 0.1, "surprise": 0.2}, ...]

        Returns:
            dict: distribution -> {'anger': 0.04678370220399322, 'neutral': 0.04147910314122111, 'disgust': 0.05076599764308418, 'fear': 0.012459961661656426, 'happiness': 0.3805726751609995, 'sadness': 0.001341534333740512, 'surprise': 0.46659702585530505}
        """


    def get_fluctuation_from_emotion(self, emotion):
        """

        获取情绪的波动

        Args:
            emotion: [{"anger": 0.1, "neutral": 0.1, "disgust": 0.1, "fear": 0.005670338961718315, "happiness": 0.2 "sadness": 0.1, "surprise": 0.2}, ...]

        Returns:
            list: fluction -> [0.2625822317841726, 0.286318327656083, 0.19226654361134174, 0.26339393328225225, 0.3021995866171042, 0.2843571171657221, ...]
        """


    def parse(self, emotion):
        '''
        情绪整体分析,返回情绪数据,情绪总体分布,情绪波动

        Args:
            emotion: [{"anger": 0.1, "neutral": 0.1, "disgust": 0.1, "fear": 0.005670338961718315, "happiness": 0.2 "sadness": 0.1, "surprise": 0.2}, ...]

        Returns:
            list: data ->[[2.639, 1.415, 45.941, 3.918, 34.431, 0.159, 11.497], [0.685, 18.661, ... ] ... ]  顺序为['anger', 'neutral', 'disgust', 'fear', 'happiness', 'sadness', 'surprise']
            dict: distribution
            list: fluction
        '''

HeartRateAnalyser

class HeartRateAnalyser:
    '''
    心率分析器
    '''
    def get_bpm_from_heart_rate(self, heart_rate):
        '''

        Args:
            heart_rate: [[70, 1000.0], [75, 2000.0], ...]

        Returns:
            list: [70, 71, ...] 平滑过的心率波动
        '''

FluctuationDetector

class FluctuationDetector:
    '''
    波动检测器
    '''
    def get_abnormal_fluctuation_range_from_heart_rate(self, heart_rate_infos):
        '''
        从心率信息中抽取异常波动时间范围

        Args:
            heart_rate_infos: [[70, 1000.0], [75, 2000.0], ...]

        Returns:
            list: [start_time, end_time]
        '''

    def get_abnormal_fluctuation_range_from_emotion_fluction(self, emotion_fluctuation):
        '''
        从情绪波动信息中抽取异常波动时间范围

        Args:
            emotion_fluctuation: [0.2625822317841726, 0.286318327656083, 0.19226654361134174, 0.26339393328225225, 0.3021995866171042, 0.2843571171657221, ...]

        Returns:
            list: [start_time, end_time]

        '''

    def get_text_from_emotion_abnormal_fluction(self, text_with_timestamp, emotion_fluctuation):
        '''
        结合带时间戳的文本抽取当情绪波动异常时的文本

        Args:
            text_with_timestamp: [[[[0, 1170], "领导你好,"], [[1170, 2370], "我叫,"]], ...]
            emotion_fluctuation: [0.2625822317841726, 0.286318327656083, 0.19226654361134174, 0.26339393328225225, 0.3021995866171042, 0.2843571171657221, ...]

        Returns
            str: "abnormal_text"
        '''

    def get_text_from_heart_rate_abnormal_fluction(self, text_with_timestamp, heart_rate):
        '''
        结合带时间戳的文本抽取心率波动异常时的文本

        Args:
            text_with_timestamp: [[[[0, 1170], "领导你好,"], [[1170, 2370], "我叫,"]], ...]
            heart_rate: [[70, 1000.0], [75, 2000.0], ...]

        Returns:
            str: "abnormal_text"
        '''

release

python3 setup.py sdist bdist_wheel
twine upload dist/*

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for mmanalyser, version 0.6.0
Filename, size File type Python version Upload date Hashes
Filename, size mmanalyser-0.6.0-py3-none-any.whl (241.3 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size mmanalyser-0.6.0.tar.gz (237.6 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring DigiCert DigiCert EV certificate Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page