Skip to main content

Open MMLab Computer Vision Foundation

Project description

https://img.shields.io/pypi/v/mmcv https://github.com/open-mmlab/mmcv/workflows/build/badge.svg https://codecov.io/gh/open-mmlab/mmcv/branch/master/graph/badge.svg https://img.shields.io/github/license/open-mmlab/mmcv.svg

Introduction

MMCV is a foundational python library for computer vision research and supports many research projects in MMLAB, such as MMDetection and MMAction.

It provides the following functionalities.

  • Universal IO APIs

  • Image processing

  • Video processing

  • Image and annotation visualization

  • Useful utilities (progress bar, timer, …)

  • PyTorch runner with hooking mechanism

  • Various CNN architectures

See the documentation for more features and usage.

Note: MMCV requires Python 3.6+.

Installation

Try and start with

pip install mmcv

or install from source

git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
pip install -e .

Note: If you would like to use opencv-python-headless instead of opencv-python, e.g., in a minimum container environment or servers without GUI, you can first install it before installing MMCV to skip the installation of opencv-python.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mmcv-nightly-0.5.9.dev20200610.tar.gz (75.0 kB view details)

Uploaded Source

Built Distributions

File details

Details for the file mmcv-nightly-0.5.9.dev20200610.tar.gz.

File metadata

  • Download URL: mmcv-nightly-0.5.9.dev20200610.tar.gz
  • Upload date:
  • Size: 75.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.6.8

File hashes

Hashes for mmcv-nightly-0.5.9.dev20200610.tar.gz
Algorithm Hash digest
SHA256 e0bf501bf4cc31bbb3b6ddef932d433c1891f3a82dfa94200f88495441ff09f4
MD5 c70bdc2412a1442bdae9fb68914960f7
BLAKE2b-256 4d72055e8497f293d2d23304dec6669716e480b59eaac743ce1a2aab166423b8

See more details on using hashes here.

File details

Details for the file mmcv_nightly-0.5.9.dev20200610-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-0.5.9.dev20200610-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e61d731177ae9ccccd444dec4a2572cf6e618472fce46ffd0b1c16078f8127fc
MD5 98ed9178ed3cb2613441b248c8e672ea
BLAKE2b-256 b20b7d86560b529a3192a3d4aea86ab4a4b8f1000375e35834932013ff6f186f

See more details on using hashes here.

File details

Details for the file mmcv_nightly-0.5.9.dev20200610-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-0.5.9.dev20200610-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a1964e45d0b099e2bd5d0c21cd71c5e21cf6bfd2833256391e39cb36908348bd
MD5 da27da96695c9774972eab3a385da8e4
BLAKE2b-256 9353c5f4b183a9574e43dbb9a1c068e03d312f51a05e1f763c8606c86dc39edf

See more details on using hashes here.

File details

Details for the file mmcv_nightly-0.5.9.dev20200610-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-0.5.9.dev20200610-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b6184fed182b55598ada11f262fde372a95b4214faab16bb299933abf97b27d8
MD5 966139ce69f74c21198bddd8e685e8bb
BLAKE2b-256 4994ac76ec4a7cac08ea278e1a0748aec9fa07277d058fe0d2d468ffc1cd9c20

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page