Skip to main content

Open MMLab Computer Vision Foundation

Project description

https://img.shields.io/pypi/v/mmcv https://github.com/open-mmlab/mmcv/workflows/build/badge.svg https://codecov.io/gh/open-mmlab/mmcv/branch/master/graph/badge.svg https://img.shields.io/github/license/open-mmlab/mmcv.svg

Introduction

MMCV is a foundational python library for computer vision research and supports many research projects in MMLAB, such as MMDetection and MMAction.

It provides the following functionalities.

  • Universal IO APIs

  • Image processing

  • Video processing

  • Image and annotation visualization

  • Useful utilities (progress bar, timer, …)

  • PyTorch runner with hooking mechanism

  • Various CNN architectures

See the documentation for more features and usage.

Note: MMCV requires Python 3.6+.

Installation

Try and start with

pip install mmcv

or install from source

git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
pip install -e .

Note: If you would like to use opencv-python-headless instead of opencv-python, e.g., in a minimum container environment or servers without GUI, you can first install it before installing MMCV to skip the installation of opencv-python.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mmcv-nightly-0.5.9.dev20200613.tar.gz (78.9 kB view details)

Uploaded Source

Built Distributions

File details

Details for the file mmcv-nightly-0.5.9.dev20200613.tar.gz.

File metadata

  • Download URL: mmcv-nightly-0.5.9.dev20200613.tar.gz
  • Upload date:
  • Size: 78.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.6.8

File hashes

Hashes for mmcv-nightly-0.5.9.dev20200613.tar.gz
Algorithm Hash digest
SHA256 cb6eb2a1e6f10067be5d0f33bd8e1dbe0ee4a09a1924d21f81b3a4d03fe74099
MD5 b553fb3aebf395e85d53ef38f12c8cf3
BLAKE2b-256 b6cf6cfe5e6c24152cef35df548fe29404886b95998515234bfbd23c038a8716

See more details on using hashes here.

File details

Details for the file mmcv_nightly-0.5.9.dev20200613-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-0.5.9.dev20200613-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a4f5c1929ec3262beeebe011eb3e7006bc6ac84ed275aa6845c6b012f9534593
MD5 8cf0903072eba046fe75431f55471b24
BLAKE2b-256 4a7676c85b63ab9c597af12ae9be4a7ad2e14c3d296e4f2b9ed4679cca23c77d

See more details on using hashes here.

File details

Details for the file mmcv_nightly-0.5.9.dev20200613-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-0.5.9.dev20200613-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 bcf3856d0b04a3643830fbeb7842fda7a462b70511b9791fb3d7f8f12cba0cf8
MD5 e6ce43a198a34ab49641e1b7dea7d01b
BLAKE2b-256 903e945e1f94d1dbfc69fe356ceca7bc0266479262bd6174161987edbede7427

See more details on using hashes here.

File details

Details for the file mmcv_nightly-0.5.9.dev20200613-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-0.5.9.dev20200613-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 30a2c5122c4bb416e52ece1e526fa866ea93c7614fb6978abc5629b10807df2d
MD5 de132b11212851927c899bedea4e21a5
BLAKE2b-256 59a386ab75acf5a7602c68c1aad9b23dd1be9e5624efe7e23d5f061c73fbb1b8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page