Skip to main content

Open MMLab Computer Vision Foundation

Project description

https://img.shields.io/pypi/v/mmcv https://github.com/open-mmlab/mmcv/workflows/build/badge.svg https://codecov.io/gh/open-mmlab/mmcv/branch/master/graph/badge.svg https://img.shields.io/github/license/open-mmlab/mmcv.svg

Introduction

MMCV is a foundational python library for computer vision research and supports many research projects in MMLAB, such as MMDetection and MMAction.

It provides the following functionalities.

  • Universal IO APIs

  • Image processing

  • Video processing

  • Image and annotation visualization

  • Useful utilities (progress bar, timer, …)

  • PyTorch runner with hooking mechanism

  • Various CNN architectures

See the documentation for more features and usage.

Note: MMCV requires Python 3.6+.

Installation

Try and start with

pip install mmcv

or install from source

git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
pip install -e .

Note: If you would like to use opencv-python-headless instead of opencv-python, e.g., in a minimum container environment or servers without GUI, you can first install it before installing MMCV to skip the installation of opencv-python.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mmcv-nightly-0.6.1.dev20200622.tar.gz (84.0 kB view details)

Uploaded Source

Built Distributions

File details

Details for the file mmcv-nightly-0.6.1.dev20200622.tar.gz.

File metadata

  • Download URL: mmcv-nightly-0.6.1.dev20200622.tar.gz
  • Upload date:
  • Size: 84.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.6.8

File hashes

Hashes for mmcv-nightly-0.6.1.dev20200622.tar.gz
Algorithm Hash digest
SHA256 f4b257a69eda0f802a52274421984864e0ec7f70298ca3ff383aa4d9d37e5672
MD5 ee9743b14759f6413bfe39b8b9f32650
BLAKE2b-256 81f4e08d4db1f2366937d900a4d3ab1604a7c79011d4fb060e911c0a945399dd

See more details on using hashes here.

File details

Details for the file mmcv_nightly-0.6.1.dev20200622-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-0.6.1.dev20200622-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6cd26f346c0e017c851b7b188c115a778935e478d08d4fa2da841288d7d84baf
MD5 a2324b2030133c2a3b1edbb9383d757a
BLAKE2b-256 c35e8dbb225ad33d8cb43aba1a88c182e1d07b8a479bec7067bcc126fd57a781

See more details on using hashes here.

File details

Details for the file mmcv_nightly-0.6.1.dev20200622-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-0.6.1.dev20200622-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d9faca053ce11100de455f4e9bd82869337f419daabd1508ba93f6a7563cd800
MD5 58284b33e4880494a1f55a8c045e098e
BLAKE2b-256 b026c83c9f1273dbbe61bb6916c2b749b22bdba7ff48200b198e1a6e8efe2917

See more details on using hashes here.

File details

Details for the file mmcv_nightly-0.6.1.dev20200622-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-0.6.1.dev20200622-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c2b5e8d66b762feb18183d74659797150116069666304aba62592911b78c90a4
MD5 8d0f117ddb4fb273c9baf0d8dd8a391d
BLAKE2b-256 0c48cccdc8fff5c9c23d0cb00163e7d48648eccd5d61d6c2fe6f581032cb5b49

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page