Skip to main content

OpenMMLab Computer Vision Foundation

Project description

https://img.shields.io/pypi/v/mmcv https://github.com/open-mmlab/mmcv/workflows/build/badge.svg https://codecov.io/gh/open-mmlab/mmcv/branch/master/graph/badge.svg https://img.shields.io/github/license/open-mmlab/mmcv.svg

Introduction

MMCV is a foundational python library for computer vision research and supports many research projects in MMLAB, such as MMDetection and MMAction.

It provides the following functionalities.

  • Universal IO APIs

  • Image/Video processing

  • Image and annotation visualization

  • Useful utilities (progress bar, timer, …)

  • PyTorch runner with hooking mechanism

  • Various CNN architectures

  • High-quality implementation of common CUDA ops

See the documentation for more features and usage.

Note: MMCV requires Python 3.6+.

Installation

Try and start with

pip install mmcv

or install from source

git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
pip install -e .

Note: If you would like to use opencv-python-headless instead of opencv-python, e.g., in a minimum container environment or servers without GUI, you can first install it before installing MMCV to skip the installation of opencv-python.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mmcv-nightly-1.0rc0.dev20200629.tar.gz (161.8 kB view details)

Uploaded Source

Built Distributions

File details

Details for the file mmcv-nightly-1.0rc0.dev20200629.tar.gz.

File metadata

  • Download URL: mmcv-nightly-1.0rc0.dev20200629.tar.gz
  • Upload date:
  • Size: 161.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.6.8

File hashes

Hashes for mmcv-nightly-1.0rc0.dev20200629.tar.gz
Algorithm Hash digest
SHA256 21e5c418e72b01f8eed8c09cffd86032d3f0aa92d34dc2909fd4c45d6e08e20d
MD5 c6cdb7e3fe65af39671d6f4a6b15cbeb
BLAKE2b-256 fd7d6522903ced3661f18d20594a817b12d13f5da0aa7338e2890a9b482f10ef

See more details on using hashes here.

File details

Details for the file mmcv_nightly-1.0rc0.dev20200629-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-1.0rc0.dev20200629-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6e074e6d2e22d701aaa6225383a080f4fee9f2f3e7377e596d0b16c4e186afaf
MD5 1ad7b1277c4cf7788bb39d1ebe55a5fc
BLAKE2b-256 7b50db7accbda3aedcb6ae63517aed516577d3a3d1374063d00a8646a77a1d6f

See more details on using hashes here.

File details

Details for the file mmcv_nightly-1.0rc0.dev20200629-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-1.0rc0.dev20200629-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a06c52011a6b582deedef489a23670bb2520452d2e7ee238208f715bf90965d9
MD5 cf3bac87da4000d8ee764a3ffeeffbcc
BLAKE2b-256 330b474a55a7b12ec78bf6288d0c95e7a8f0ef1067304c0e1122f6285e41a4c8

See more details on using hashes here.

File details

Details for the file mmcv_nightly-1.0rc0.dev20200629-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-1.0rc0.dev20200629-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f5a36773f0d1b20ce6db36766d046b7981eef8fc28736202d5e927ae5d84c8fc
MD5 b5af1d6fb80337accf6426dcba902510
BLAKE2b-256 e07546fc912698b905b1d1c9837d5056142408543a36adc4b0a55328a4f30e21

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page