Skip to main content

OpenMMLab's next-generation platformfor general 3D object detection.

Project description

docs badge codecov license

News: We released the codebase v0.1.0.

Documentation: https://mmdetection3d.readthedocs.io/

Introduction

The master branch works with PyTorch 1.3 to 1.5.

MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the OpenMMLab project developed by MMLab.

demo image

Major features

  • Support multi-modality/single-modality detectors out of box

    It directly supports multi-modality/single-modality detectors including MVXNet, VoteNet, PointPillars, etc.

  • Support indoor/outdoor 3D detection out of box

    It directly supports popular indoor and outdoor 3D detection datasets, including ScanNet, SUNRGB-D, nuScenes, Lyft, and KITTI.

  • Natural integration with 2D detection

    All the about 40+ methods, 300+ models, and modules supported in MMDetection can be trained or used in this codebase.

  • High efficiency

    It trains faster than other codebases. The main results are as below. Details can be found in benchmark.md. We compare the number of samples trained per second (the higher, the better). The models that are not supported by other codebases are marked by ×.

    Methods MMDetection3D OpenPCDet votenet Det3D
    VoteNet 358 × 77 ×
    PointPillars-car 141 × × 140
    PointPillars-3class 107 44 × ×
    SECOND 40 30 × ×
    Part-A2 17 14 × ×

Like MMDetection and MMCV, MMDetection3D can also be used as a library to support different projects on top of it.

License

This project is released under the Apache 2.0 license.

Changelog

v0.1.0 was released in 9/7/2020. Please refer to changelog.md for details and release history.

Benchmark and model zoo

Supported methods and backbones are shown in the below table. Results and models are available in the model zoo.

ResNet ResNeXt SENet PointNet++ HRNet RegNetX Res2Net
SECOND
PointPillars
FreeAnchor
VoteNet
Part-A2
MVXNet

Other features

Note: All the about 300 models, methods of 40+ papers in 2D detection supported by MMDetection can be trained or used in this codebase.

Installation

Please refer to install.md for installation and dataset preparation.

Get Started

Please see getting_started.md for the basic usage of MMDetection. There are also tutorials for finetuning models, adding new dataset, designing data pipeline, and adding new modules.

Contributing

We appreciate all contributions to improve MMDetection3D. Please refer to CONTRIBUTING.md for the contributing guideline.

Acknowledgement

MMDetection3D is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors as well as users who give valuable feedbacks. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new 3D detectors.

Citation

If you use this toolbox or benchmark in your research, please cite this project.

@misc{mmdetection3d_2020,
  title   = {{MMDetection3D}},
  author  = {Zhang, Wenwei and Wu, Yuefeng and Wang, Tai and Li, Yinhao and
             Lin, Kwan-Yee and Wang, Zhe and Shi, Jianping and Qian, Chen and
             Chen, Kai, and Lin, Dahua and Loy, Chen Change},
  howpublished = {\url{https://github.com/open-mmlab/mmdetection3d}},
  year =         {2020}
}

Contact

This repo is currently maintained by Wenwei Zhang (@ZwwWayne), Yuefeng Wu (@xavierwu95), Tai Wang (@Tai-Wang), and Yinhao Li (@yinchimaoliang).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mmdet3d-0.5.0.tar.gz (183.4 kB view details)

Uploaded Source

File details

Details for the file mmdet3d-0.5.0.tar.gz.

File metadata

  • Download URL: mmdet3d-0.5.0.tar.gz
  • Upload date:
  • Size: 183.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.7.8

File hashes

Hashes for mmdet3d-0.5.0.tar.gz
Algorithm Hash digest
SHA256 63e1af8700b0544bbb00c0f067d6a9a2b0b2c6487092b4908354853c9d75f524
MD5 b7844d040d3fd984b19a60a62ba8dfdf
BLAKE2b-256 236c8795d13b1dfe8302a0d1931bde7c5e4a63a4471176efe3e73bb78650ccd5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page