Skip to main content

OpenMMLab's next-generation platformfor general 3D object detection.

Project description

 
OpenMMLab website HOT      OpenMMLab platform TRY IT OUT
 

docs badge codecov license

News:

We have renamed the branch 1.1 to main and switched the default branch from master to main. We encourage users to migrate to the latest version, though it comes with some cost. Please refer to Migration Guide for more details.

v1.1.0 was released in 6/4/2023

We have supported more LiDAR-based segmentation methods, including Cylinder3D, MinkUNet and SPVCNN. More new features about 3D perception are on the way. Please stay tuned!

v1.1.0rc3 was released in 7/1/2023

The compatibilities of models are broken due to the unification and simplification of coordinate systems after v1.0.0rc0. For now, most models are benchmarked with similar performance, though few models are still being benchmarked. In the following release, we will update all the model checkpoints and benchmarks. See more details in the Changelog and Changelog-v1.0.x.

Documentation: https://mmdetection3d.readthedocs.io/

Introduction

English | 简体中文

The master branch works with PyTorch 1.6+.

MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the OpenMMLab project developed by MMLab.

demo image

Major features

  • Support multi-modality/single-modality detectors out of box

    It directly supports multi-modality/single-modality detectors including MVXNet, VoteNet, PointPillars, etc.

  • Support indoor/outdoor 3D detection out of box

    It directly supports popular indoor and outdoor 3D detection datasets, including ScanNet, SUNRGB-D, Waymo, nuScenes, Lyft, and KITTI. For nuScenes dataset, we also support nuImages dataset.

  • Natural integration with 2D detection

    All the about 300+ models, methods of 40+ papers, and modules supported in MMDetection can be trained or used in this codebase.

  • High efficiency

    It trains faster than other codebases. The main results are as below. Details can be found in benchmark.md. We compare the number of samples trained per second (the higher, the better). The models that are not supported by other codebases are marked by .

    Methods MMDetection3D OpenPCDet votenet Det3D
    VoteNet 358 77
    PointPillars-car 141 140
    PointPillars-3class 107 44
    SECOND 40 30
    Part-A2 17 14

Like MMDetection and MMCV, MMDetection3D can also be used as a library to support different projects on top of it.

License

This project is released under the Apache 2.0 license.

Changelog

1.1.0 was released in 6/4/2023.

Please refer to changelog.md for details and release history.

Benchmark and model zoo

Results and models are available in the model zoo.

Components
Backbones Heads Features
Architectures
3D Object Detection Monocular 3D Object Detection Multi-modal 3D Object Detection 3D Semantic Segmentation
  • Outdoor
  • Indoor
  • Outdoor
  • Indoor
  • Outdoor
  • Indoor
  • Outdoor
  • Indoor
  • ResNet PointNet++ SECOND DGCNN RegNetX DLA MinkResNet Cylinder3D MinkUNet
    SECOND
    PointPillars
    FreeAnchor
    VoteNet
    H3DNet
    3DSSD
    Part-A2
    MVXNet
    CenterPoint
    SSN
    ImVoteNet
    FCOS3D
    PointNet++
    Group-Free-3D
    ImVoxelNet
    PAConv
    DGCNN
    SMOKE
    PGD
    MonoFlex
    SA-SSD
    FCAF3D
    PV-RCNN
    Cylinder3D
    MinkUNet
    SPVCNN

    Note: All the about 300+ models, methods of 40+ papers in 2D detection supported by MMDetection can be trained or used in this codebase.

    Installation

    Please refer to get_started.md for installation.

    Get Started

    Please see get_started.md for the basic usage of MMDetection3D. We provide guidance for quick run with existing dataset and with new dataset for beginners. There are also tutorials for learning configuration systems, customizing dataset, designing data pipeline, customizing models, customizing runtime settings and Waymo dataset.

    Please refer to FAQ for frequently asked questions. When updating the version of MMDetection3D, please also check the compatibility doc to be aware of the BC-breaking updates introduced in each version.

    Citation

    If you find this project useful in your research, please consider cite:

    @misc{mmdet3d2020,
        title={{MMDetection3D: OpenMMLab} next-generation platform for general {3D} object detection},
        author={MMDetection3D Contributors},
        howpublished = {\url{https://github.com/open-mmlab/mmdetection3d}},
        year={2020}
    }
    

    Contributing

    We appreciate all contributions to improve MMDetection3D. Please refer to CONTRIBUTING.md for the contributing guideline.

    Acknowledgement

    MMDetection3D is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors as well as users who give valuable feedbacks. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new 3D detectors.

    Projects in OpenMMLab

    • MMEngine: OpenMMLab foundational library for training deep learning models.
    • MMCV: OpenMMLab foundational library for computer vision.
    • MMEval: A unified evaluation library for multiple machine learning libraries.
    • MIM: MIM installs OpenMMLab packages.
    • MMClassification: OpenMMLab image classification toolbox and benchmark.
    • MMDetection: OpenMMLab detection toolbox and benchmark.
    • MMDetection3D: OpenMMLab's next-generation platform for general 3D object detection.
    • MMRotate: OpenMMLab rotated object detection toolbox and benchmark.
    • MMYOLO: OpenMMLab YOLO series toolbox and benchmark.
    • MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark.
    • MMOCR: OpenMMLab text detection, recognition, and understanding toolbox.
    • MMPose: OpenMMLab pose estimation toolbox and benchmark.
    • MMHuman3D: OpenMMLab 3D human parametric model toolbox and benchmark.
    • MMSelfSup: OpenMMLab self-supervised learning toolbox and benchmark.
    • MMRazor: OpenMMLab model compression toolbox and benchmark.
    • MMFewShot: OpenMMLab fewshot learning toolbox and benchmark.
    • MMAction2: OpenMMLab's next-generation action understanding toolbox and benchmark.
    • MMTracking: OpenMMLab video perception toolbox and benchmark.
    • MMFlow: OpenMMLab optical flow toolbox and benchmark.
    • MMEditing: OpenMMLab image and video editing toolbox.
    • MMGeneration: OpenMMLab image and video generative models toolbox.
    • MMDeploy: OpenMMLab model deployment framework.

    Project details


    Download files

    Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

    Source Distribution

    mmdet3d-1.1.0.tar.gz (618.5 kB view details)

    Uploaded Source

    Built Distribution

    mmdet3d-1.1.0-py3-none-any.whl (1.0 MB view details)

    Uploaded Python 3

    File details

    Details for the file mmdet3d-1.1.0.tar.gz.

    File metadata

    • Download URL: mmdet3d-1.1.0.tar.gz
    • Upload date:
    • Size: 618.5 kB
    • Tags: Source
    • Uploaded using Trusted Publishing? No
    • Uploaded via: twine/4.0.2 CPython/3.7.16

    File hashes

    Hashes for mmdet3d-1.1.0.tar.gz
    Algorithm Hash digest
    SHA256 7fedfc12a7c151ea5a9cbdb6cd826fdcd3e065f81198caba07d8064ac21c7e49
    MD5 4ddd6c0dcc5dd9425fe12f22996d7a0f
    BLAKE2b-256 54cc8999048558034836a7bd6d9b36a0ee94d513fa4fa2c1514f176569fbfa52

    See more details on using hashes here.

    File details

    Details for the file mmdet3d-1.1.0-py3-none-any.whl.

    File metadata

    • Download URL: mmdet3d-1.1.0-py3-none-any.whl
    • Upload date:
    • Size: 1.0 MB
    • Tags: Python 3
    • Uploaded using Trusted Publishing? No
    • Uploaded via: twine/4.0.2 CPython/3.7.16

    File hashes

    Hashes for mmdet3d-1.1.0-py3-none-any.whl
    Algorithm Hash digest
    SHA256 b087aaf1e7330cfb974df7f07013b91484067ef1760e4577b0b45f76ec6df9df
    MD5 0929e4003b690330bc5b7d3efddd65a6
    BLAKE2b-256 32727afa01fa44e8bc99841408942c3339b2ea58268f6e4bb3ba49faf87e07f1

    See more details on using hashes here.

    Supported by

    AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page