Skip to main content

MMDS: A general-purpose multimodal dataset wrapper.

Project description

MMDS: A general-purpose multimodal dataset wrapper

This project is under construction, API may change from time to time.

Installation

Stable (not stable yet though)

pip install mmds

Latest

pip install mmds --pre

Example Usage

# example.py

import timeit
from pathlib import Path
from multiprocessing import Manager

from mmds import MultimodalDataset, MultimodalSample
from mmds.exceptions import PackageNotFoundError
from mmds.modalities.rgbs import RgbsModality
from mmds.modalities.wav import WavModality
from mmds.modalities.mel import MelModality
from mmds.modalities.f0 import F0Modality
from mmds.modalities.ge2e import Ge2eModality
from mmds.utils.spectrogram import LogMelSpectrogram


try:
    import youtube_dl
    import ffmpeg
    import torch
    from torchvision import transforms
except ImportError:
    raise PackageNotFoundError(
        "youtube_dl",
        "ffmpeg-python",
        "torch",
        "torchvision",
        by="example.py",
    )


def download():
    Path("data").mkdir(exist_ok=True)

    ydl_opts = {
        "postprocessors": [
            {
                "key": "FFmpegExtractAudio",
                "preferredcodec": "mp3",
                "preferredquality": "192",
            }
        ],
        "postprocessor_args": ["-ar", "16000"],
        "outtmpl": "data/%(id)s.%(ext)s",
        "keepvideo": True,
    }
    with youtube_dl.YoutubeDL(ydl_opts) as ydl:
        ydl.download(["https://www.youtube.com/watch?v=BaW_jenozKc"])

    path = Path("data/BaW_jenozKc")

    if not path.exists():
        path.mkdir(exist_ok=True)

        (
            ffmpeg.input("data/BaW_jenozKc.mp4")
            .filter("fps", fps="25")
            .output("data/BaW_jenozKc/%06d.png", start_number=0)
            .overwrite_output()
            .run(quiet=True)
        )


class MyMultimodalSample(MultimodalSample):
    def generate_info(self):
        wav_modality = self.get_modality_by_name("wav")
        rgbs_modality = self.get_modality_by_name("rgbs")
        return dict(
            t0=0,
            t1=wav_modality.duration / 10,
            original_wav_seconds=wav_modality.duration,
            original_rgbs_seconds=rgbs_modality.duration,
        )


class MyMultimodalDataset(MultimodalDataset):
    Sample = MyMultimodalSample


def main():
    download()

    # optional multiprocessing cache manager
    manager = Manager()

    dataset = MyMultimodalDataset(
        ["BaW_jenozKc"],
        modality_factories=[
            RgbsModality.create_factory(
                name="rgbs",
                root="data",
                suffix="*.png",
                sample_rate=25,
                transform=transforms.Compose(
                    [
                        transforms.Resize((28, 28)),
                        transforms.ToTensor(),
                        transforms.Normalize(0.5, 1),
                    ],
                ),
                aggragate=torch.stack,
                cache=manager.dict(),
            ),
            WavModality.create_factory(
                name="wav",
                root="data",
                suffix=".mp3",
                sample_rate=16_000,
                cache=manager.dict(),
            ),
            MelModality.create_factory(
                name="mel",
                root="data",
                suffix=".mel.npz",
                mel_fn=LogMelSpectrogram(sample_rate=16_000),
                base_modality_name="wav",
                cache=manager.dict(),
            ),
            F0Modality.create_factory(
                name="f0",
                root="data",
                suffix=".f0.npz",
                mel_fn=LogMelSpectrogram(sample_rate=16_000),
                base_modality_name="wav",
                cache=manager.dict(),
            ),
            Ge2eModality.create_factory(
                name="ge2e",
                root="data",
                suffix=".ge2e.npz",
                sample_rate=16_000,
                base_modality_name="wav",
                cache=manager.dict(),
            ),
        ],
    )

    # first load
    print(timeit.timeit(lambda: dataset[0], number=1))

    # second load
    print(timeit.timeit(lambda: dataset[0], number=1))

    print(dataset[0]["info"])

    for key, value in dataset[0].items():
        try:
            print(key, value.shape, type(value))
        except:
            pass


if __name__ == "__main__":
    main()

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mmds-0.0.1.dev20211008002639.tar.gz (13.5 kB view details)

Uploaded Source

Built Distribution

mmds-0.0.1.dev20211008002639-py3-none-any.whl (16.9 kB view details)

Uploaded Python 3

File details

Details for the file mmds-0.0.1.dev20211008002639.tar.gz.

File metadata

  • Download URL: mmds-0.0.1.dev20211008002639.tar.gz
  • Upload date:
  • Size: 13.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for mmds-0.0.1.dev20211008002639.tar.gz
Algorithm Hash digest
SHA256 b2d811666540a22f535ca9d76c1ce3dbb081c4b77d424221d5af5d00e2251ec9
MD5 2f35f45d8c531fbe66c34630d7266150
BLAKE2b-256 a8ef90c4bb74780667def32e9d0137b55cc7a056d6d71118d25f64fc45fe0ac2

See more details on using hashes here.

File details

Details for the file mmds-0.0.1.dev20211008002639-py3-none-any.whl.

File metadata

  • Download URL: mmds-0.0.1.dev20211008002639-py3-none-any.whl
  • Upload date:
  • Size: 16.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for mmds-0.0.1.dev20211008002639-py3-none-any.whl
Algorithm Hash digest
SHA256 a9f7668e38780258c1729a3c679731ddd6974ee3e260d24360424286a42ce57d
MD5 ff15a5bddcf2417e9650030e68f35d81
BLAKE2b-256 98e909695e6432a0c8f09ee47f80b6e0e52ac0839f1613b6c86908abeaaa00fb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page