Skip to main content

MMDS: A general-purpose multimodal dataset wrapper.

Project description

MMDS: A general-purpose multimodal dataset wrapper

This project is under construction, API may change from time to time.

Installation

Stable (not stable yet though)

pip install mmds

Latest

pip install mmds --pre

Example Usage

# example.py

import timeit
from pathlib import Path
from multiprocessing import Manager

from mmds import MultimodalDataset, MultimodalSample
from mmds.exceptions import PackageNotFoundError
from mmds.modalities.rgbs import RgbsModality
from mmds.modalities.wav import WavModality
from mmds.modalities.mel import MelModality
from mmds.modalities.f0 import F0Modality
from mmds.modalities.ge2e import Ge2eModality
from mmds.utils.spectrogram import LogMelSpectrogram


try:
    import youtube_dl
    import ffmpeg
    import torch
    from torchvision import transforms
except ImportError:
    raise PackageNotFoundError(
        "youtube_dl",
        "ffmpeg-python",
        "torch",
        "torchvision",
        by="example.py",
    )


def download():
    Path("data").mkdir(exist_ok=True)

    ydl_opts = {
        "postprocessors": [
            {
                "key": "FFmpegExtractAudio",
                "preferredcodec": "mp3",
                "preferredquality": "192",
            }
        ],
        "postprocessor_args": ["-ar", "16000"],
        "outtmpl": "data/%(id)s.%(ext)s",
        "keepvideo": True,
    }
    with youtube_dl.YoutubeDL(ydl_opts) as ydl:
        ydl.download(["https://www.youtube.com/watch?v=BaW_jenozKc"])

    path = Path("data/BaW_jenozKc")

    if not path.exists():
        path.mkdir(exist_ok=True)

        (
            ffmpeg.input("data/BaW_jenozKc.mp4")
            .filter("fps", fps="25")
            .output("data/BaW_jenozKc/%06d.png", start_number=0)
            .overwrite_output()
            .run(quiet=True)
        )


class MyMultimodalSample(MultimodalSample):
    def generate_info(self):
        wav_modality = self.get_modality_by_name("wav")
        rgbs_modality = self.get_modality_by_name("rgbs")
        return dict(
            t0=0,
            t1=wav_modality.duration / 10,
            original_wav_seconds=wav_modality.duration,
            original_rgbs_seconds=rgbs_modality.duration,
        )


class MyMultimodalDataset(MultimodalDataset):
    Sample = MyMultimodalSample


def main():
    download()

    # optional multiprocessing cache manager
    manager = Manager()

    dataset = MyMultimodalDataset(
        ["BaW_jenozKc"],
        modality_factories=[
            RgbsModality.create_factory(
                name="rgbs",
                root="data",
                suffix="*.png",
                sample_rate=25,
                transform=transforms.Compose(
                    [
                        transforms.Resize((28, 28)),
                        transforms.ToTensor(),
                        transforms.Normalize(0.5, 1),
                    ],
                ),
                aggragate=torch.stack,
                cache=manager.dict(),
            ),
            WavModality.create_factory(
                name="wav",
                root="data",
                suffix=".mp3",
                sample_rate=16_000,
                cache=manager.dict(),
            ),
            MelModality.create_factory(
                name="mel",
                root="data",
                suffix=".mel.npz",
                mel_fn=LogMelSpectrogram(sample_rate=16_000),
                base_modality_name="wav",
                cache=manager.dict(),
            ),
            F0Modality.create_factory(
                name="f0",
                root="data",
                suffix=".f0.npz",
                mel_fn=LogMelSpectrogram(sample_rate=16_000),
                base_modality_name="wav",
                cache=manager.dict(),
            ),
            Ge2eModality.create_factory(
                name="ge2e",
                root="data",
                suffix=".ge2e.npz",
                sample_rate=16_000,
                base_modality_name="wav",
                cache=manager.dict(),
                fetching=False,
            ),
        ],
    )

    # first load
    print(timeit.timeit(lambda: dataset[0], number=1))

    # second load
    print(timeit.timeit(lambda: dataset[0], number=1))

    print(dataset[0]["info"])

    for key, value in dataset[0].items():
        try:
            print(key, value.shape, type(value))
        except:
            pass


if __name__ == "__main__":
    main()

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mmds-0.0.1.dev20211118105448.tar.gz (12.3 kB view details)

Uploaded Source

Built Distribution

mmds-0.0.1.dev20211118105448-py3-none-any.whl (15.7 kB view details)

Uploaded Python 3

File details

Details for the file mmds-0.0.1.dev20211118105448.tar.gz.

File metadata

  • Download URL: mmds-0.0.1.dev20211118105448.tar.gz
  • Upload date:
  • Size: 12.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for mmds-0.0.1.dev20211118105448.tar.gz
Algorithm Hash digest
SHA256 0a1fc99d497667b47566c3a4426afa5ac82b23fe59238a502890b02f0573e89c
MD5 29508b1a3ea9569963c2d61760f109e4
BLAKE2b-256 1858ee31ded3780368d1ce67ec3420e1363b2668f772c57ad6efbd53936a6ee5

See more details on using hashes here.

File details

Details for the file mmds-0.0.1.dev20211118105448-py3-none-any.whl.

File metadata

  • Download URL: mmds-0.0.1.dev20211118105448-py3-none-any.whl
  • Upload date:
  • Size: 15.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for mmds-0.0.1.dev20211118105448-py3-none-any.whl
Algorithm Hash digest
SHA256 97361ced5dd8248c2c7949fa798a1389fcf0187a75600947a509de6952a09889
MD5 62177527afe09a35dae844d1ddd83ee4
BLAKE2b-256 961c79ba13a3bf7629ba27deeee09b485676b01d96dbf135ae2a8f7fb5ab0cc1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page