Skip to main content

MMDS: A general-purpose multimodal dataset wrapper.

Project description

MMDS: A general-purpose multimodal dataset wrapper

This project is under construction, API may change from time to time.

Installation

Stable (not stable yet though)

pip install mmds

Latest

pip install mmds --pre

Example Usage

# example.py

import timeit
from pathlib import Path
from multiprocessing import Manager

from mmds import MultimodalDataset, MultimodalSample
from mmds.exceptions import PackageNotFoundError
from mmds.modalities.rgbs import RgbsModality
from mmds.modalities.wav import WavModality
from mmds.modalities.mel import MelModality
from mmds.modalities.f0 import F0Modality
from mmds.modalities.ge2e import Ge2eModality
from mmds.utils.spectrogram import LogMelSpectrogram


try:
    import youtube_dl
    import ffmpeg
    import torch
    from torchvision import transforms
except ImportError:
    raise PackageNotFoundError(
        "youtube_dl",
        "ffmpeg-python",
        "torch",
        "torchvision",
        by="example.py",
    )


def download():
    Path("data").mkdir(exist_ok=True)

    ydl_opts = {
        "postprocessors": [
            {
                "key": "FFmpegExtractAudio",
                "preferredcodec": "mp3",
                "preferredquality": "192",
            }
        ],
        "postprocessor_args": ["-ar", "16000"],
        "outtmpl": "data/%(id)s.%(ext)s",
        "keepvideo": True,
    }
    with youtube_dl.YoutubeDL(ydl_opts) as ydl:
        ydl.download(["https://www.youtube.com/watch?v=BaW_jenozKc"])

    path = Path("data/BaW_jenozKc")

    if not path.exists():
        path.mkdir(exist_ok=True)

        (
            ffmpeg.input("data/BaW_jenozKc.mp4")
            .filter("fps", fps="25")
            .output("data/BaW_jenozKc/%06d.png", start_number=0)
            .overwrite_output()
            .run(quiet=True)
        )


class MyMultimodalSample(MultimodalSample):
    def generate_info(self):
        wav_modality = self.get_modality_by_name("wav")
        rgbs_modality = self.get_modality_by_name("rgbs")
        return dict(
            t0=0,
            t1=wav_modality.duration / 10,
            original_wav_seconds=wav_modality.duration,
            original_rgbs_seconds=rgbs_modality.duration,
        )


class MyMultimodalDataset(MultimodalDataset):
    Sample = MyMultimodalSample


def main():
    download()

    # optional multiprocessing cache manager
    manager = Manager()

    dataset = MyMultimodalDataset(
        ["BaW_jenozKc"],
        modality_factories=[
            RgbsModality.create_factory(
                name="rgbs",
                root="data",
                suffix="*.png",
                sample_rate=25,
                transform=transforms.Compose(
                    [
                        transforms.Resize((28, 28)),
                        transforms.ToTensor(),
                        transforms.Normalize(0.5, 1),
                    ],
                ),
                aggragate=torch.stack,
                cache=manager.dict(),
            ),
            WavModality.create_factory(
                name="wav",
                root="data",
                suffix=".mp3",
                sample_rate=16_000,
                cache=manager.dict(),
            ),
            MelModality.create_factory(
                name="mel",
                root="data",
                suffix=".mel.npz",
                mel_fn=LogMelSpectrogram(sample_rate=16_000),
                base_modality_name="wav",
                cache=manager.dict(),
            ),
            F0Modality.create_factory(
                name="f0",
                root="data",
                suffix=".f0.npz",
                mel_fn=LogMelSpectrogram(sample_rate=16_000),
                base_modality_name="wav",
                cache=manager.dict(),
            ),
            Ge2eModality.create_factory(
                name="ge2e",
                root="data",
                suffix=".ge2e.npz",
                sample_rate=16_000,
                base_modality_name="wav",
                cache=manager.dict(),
                fetching=False,
            ),
        ],
    )

    # first load
    print(timeit.timeit(lambda: dataset[0], number=1))

    # second load
    print(timeit.timeit(lambda: dataset[0], number=1))

    print(dataset[0]["info"])

    for key, value in dataset[0].items():
        try:
            print(key, value.shape, type(value))
        except:
            pass


if __name__ == "__main__":
    main()

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mmds-0.0.1.dev20211129204706.tar.gz (12.2 kB view details)

Uploaded Source

Built Distribution

mmds-0.0.1.dev20211129204706-py3-none-any.whl (15.6 kB view details)

Uploaded Python 3

File details

Details for the file mmds-0.0.1.dev20211129204706.tar.gz.

File metadata

  • Download URL: mmds-0.0.1.dev20211129204706.tar.gz
  • Upload date:
  • Size: 12.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for mmds-0.0.1.dev20211129204706.tar.gz
Algorithm Hash digest
SHA256 0bb7d8bcfdf49681d78483244462bff3b58d6e9324c7620bd514afb471b24e30
MD5 e393d0bf10b0a5975e3b88b71709d3dc
BLAKE2b-256 55056ba3fffcfbb96c610e77ab11c320a1ff5951e6ca3a64e1cd84cf2ff77a17

See more details on using hashes here.

File details

Details for the file mmds-0.0.1.dev20211129204706-py3-none-any.whl.

File metadata

  • Download URL: mmds-0.0.1.dev20211129204706-py3-none-any.whl
  • Upload date:
  • Size: 15.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for mmds-0.0.1.dev20211129204706-py3-none-any.whl
Algorithm Hash digest
SHA256 c8491a5887fb9dc9b46309ae556373ea1a500b1d2a6ed866db9f9ea54d36413e
MD5 8807b98d8fd66f491fd6e0c9178b7030
BLAKE2b-256 71509f18cd592fb44ec608f1a164d46a8c83c9e95bb4612fb30288cc102c8d85

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page