Skip to main content

MMDS: A general-purpose multimodal dataset wrapper.

Project description

MMDS: A general-purpose multimodal dataset wrapper

This project is under construction, API may change from time to time.

Installation

Stable (not stable yet though)

pip install mmds

Latest

pip install mmds --pre

Example Usage

# example.py

import timeit
from pathlib import Path
from multiprocessing import Manager

from mmds import MultimodalDataset, MultimodalSample
from mmds.exceptions import PackageNotFoundError
from mmds.modalities.rgbs import RgbsModality
from mmds.modalities.wav import WavModality
from mmds.modalities.mel import MelModality
from mmds.modalities.f0 import F0Modality
from mmds.modalities.ge2e import Ge2eModality
from mmds.utils.spectrogram import LogMelSpectrogram


try:
    import youtube_dl
    import ffmpeg
    import torch
    from torchvision import transforms
except ImportError:
    raise PackageNotFoundError(
        "youtube_dl",
        "ffmpeg-python",
        "torch",
        "torchvision",
        by="example.py",
    )


def download():
    Path("data").mkdir(exist_ok=True)

    ydl_opts = {
        "postprocessors": [
            {
                "key": "FFmpegExtractAudio",
                "preferredcodec": "mp3",
                "preferredquality": "192",
            }
        ],
        "postprocessor_args": ["-ar", "16000"],
        "outtmpl": "data/%(id)s.%(ext)s",
        "keepvideo": True,
    }
    with youtube_dl.YoutubeDL(ydl_opts) as ydl:
        ydl.download(["https://www.youtube.com/watch?v=BaW_jenozKc"])

    path = Path("data/BaW_jenozKc")

    if not path.exists():
        path.mkdir(exist_ok=True)

        (
            ffmpeg.input("data/BaW_jenozKc.mp4")
            .filter("fps", fps="25")
            .output("data/BaW_jenozKc/%06d.png", start_number=0)
            .overwrite_output()
            .run(quiet=True)
        )


class MyMultimodalSample(MultimodalSample):
    def generate_info(self):
        wav_modality = self.get_modality_by_name("wav")
        rgbs_modality = self.get_modality_by_name("rgbs")
        return dict(
            t0=0,
            t1=wav_modality.duration / 10,
            original_wav_seconds=wav_modality.duration,
            original_rgbs_seconds=rgbs_modality.duration,
        )


class MyMultimodalDataset(MultimodalDataset):
    Sample = MyMultimodalSample


def main():
    download()

    # optional multiprocessing cache manager
    manager = Manager()

    dataset = MyMultimodalDataset(
        ["BaW_jenozKc"],
        modality_factories=[
            RgbsModality.create_factory(
                name="rgbs",
                root="data",
                suffix="*.png",
                sample_rate=25,
                transform=transforms.Compose(
                    [
                        transforms.Resize((28, 28)),
                        transforms.ToTensor(),
                        transforms.Normalize(0.5, 1),
                    ],
                ),
                aggragate=torch.stack,
                cache=manager.dict(),
            ),
            WavModality.create_factory(
                name="wav",
                root="data",
                suffix=".mp3",
                sample_rate=16_000,
                cache=manager.dict(),
            ),
            MelModality.create_factory(
                name="mel",
                root="data",
                suffix=".mel.npz",
                mel_fn=LogMelSpectrogram(sample_rate=16_000),
                base_modality_name="wav",
                cache=manager.dict(),
            ),
            F0Modality.create_factory(
                name="f0",
                root="data",
                suffix=".f0.npz",
                mel_fn=LogMelSpectrogram(sample_rate=16_000),
                base_modality_name="wav",
                cache=manager.dict(),
            ),
            Ge2eModality.create_factory(
                name="ge2e",
                root="data",
                suffix=".ge2e.npz",
                sample_rate=16_000,
                base_modality_name="wav",
                cache=manager.dict(),
                fetching=False,
            ),
        ],
    )

    # first load
    print(timeit.timeit(lambda: dataset[0], number=1))

    # second load
    print(timeit.timeit(lambda: dataset[0], number=1))

    print(dataset[0]["info"])

    for key, value in dataset[0].items():
        try:
            print(key, value.shape, type(value))
        except:
            pass


if __name__ == "__main__":
    main()

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mmds-0.0.1.dev20211222130857.tar.gz (12.5 kB view details)

Uploaded Source

Built Distribution

mmds-0.0.1.dev20211222130857-py3-none-any.whl (15.9 kB view details)

Uploaded Python 3

File details

Details for the file mmds-0.0.1.dev20211222130857.tar.gz.

File metadata

  • Download URL: mmds-0.0.1.dev20211222130857.tar.gz
  • Upload date:
  • Size: 12.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for mmds-0.0.1.dev20211222130857.tar.gz
Algorithm Hash digest
SHA256 c14f1a6788d7e33941cb53b4dc568fcdbdc7f3a215696dadf753d3dcba17edaa
MD5 406888ec28f0488dbc922a2dfc7d425c
BLAKE2b-256 8d206bac455737f20df78aece831527ea793a775c78f4711aeec9dd22b4845c3

See more details on using hashes here.

File details

Details for the file mmds-0.0.1.dev20211222130857-py3-none-any.whl.

File metadata

  • Download URL: mmds-0.0.1.dev20211222130857-py3-none-any.whl
  • Upload date:
  • Size: 15.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for mmds-0.0.1.dev20211222130857-py3-none-any.whl
Algorithm Hash digest
SHA256 3f7c346d5860a58c4b410d3991b5e4d738c443b3896cd931e7b17777092d6129
MD5 fcc1a12e398a69dbfb34e40b9308f67f
BLAKE2b-256 6f86d4c5a3d501b23f4c66b1fb3ebcf3113eade75176b498e811fa753c614c68

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page