Skip to main content

Implementation of the sporadic simple monster group.

Project description

This is the python mmgroup project.

It gives the user the capability to compute in the Monster group. In mathematics, the Monster group is the largest finite sporadic simple group.

Project Documentation see

https://mmgroup.readthedocs.io/en/latest/

Quick installation and test

For Windows 64:

pip install mmgroup
pip install pytest
python -m pytest --pyargs mmgroup -m "not slow"

For Linux and macOS with a 64-bit x64 CPU:

pip3 install mmgroup
pip3 install pytest
python3 -m pytest --pyargs mmgroup -m "not slow"

Python wheels for some other platforms may be built with the cibuildwheel tool, see

https://mmgroup.readthedocs.io/en/latest/guide.html#cibuildwheel-label

License

Copyright Martin Seysen, 2020.

Distributed under the terms of the MIT license, mmgroup is free and open source software.

https://github.com/Martin-Seysen/test_repository/blob/master/LICENSE

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mmgroup-1.0.3-cp312-cp312-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.12 Windows x86-64

mmgroup-1.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

mmgroup-1.0.3-cp312-cp312-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

mmgroup-1.0.3-cp311-cp311-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

mmgroup-1.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

mmgroup-1.0.3-cp311-cp311-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

mmgroup-1.0.3-cp310-cp310-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

mmgroup-1.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

mmgroup-1.0.3-cp310-cp310-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

mmgroup-1.0.3-cp39-cp39-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

mmgroup-1.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

mmgroup-1.0.3-cp39-cp39-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

mmgroup-1.0.3-cp38-cp38-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

mmgroup-1.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

mmgroup-1.0.3-cp38-cp38-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file mmgroup-1.0.3-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: mmgroup-1.0.3-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for mmgroup-1.0.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 814524cd05f2e530d3f149741f6bed0fccbcbf6d5a1c00e479b9d246949e8bc5
MD5 25a09093457378636c789046133fee4c
BLAKE2b-256 a1a66afc85b22738453cdf754d39757a20102b9b58264c230b3c2a0306748306

See more details on using hashes here.

File details

Details for the file mmgroup-1.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mmgroup-1.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 071a5a868f756152ff526bae66e8991d60726c5a63723fdcdf20e7a551787b0e
MD5 91d97cfc685482ea635446553533d121
BLAKE2b-256 0279d40bfcaef5a61b8de34ed0013c3fb1aaaa6d3f9247f727dd24fa24691ab9

See more details on using hashes here.

File details

Details for the file mmgroup-1.0.3-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mmgroup-1.0.3-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9e1fc596888c5ef20c3493f13c1a355b2ded0b4eb15b64732e5e4462d79a96b7
MD5 3bbd6b684d53b2086c10798437855216
BLAKE2b-256 283f768167c9a32f4ee88cc3760aca81b2d31ada44ea5552c88290c9b0ee90d9

See more details on using hashes here.

File details

Details for the file mmgroup-1.0.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: mmgroup-1.0.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for mmgroup-1.0.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d87e4aef8ab8d2d17d995acaa81770622f56406449fc786cbc378387c33445cb
MD5 cd75d2a17e77f744f381dfcf5504a225
BLAKE2b-256 73aab1f250d0adf84091ad2f6ee4d20818e80551084c371610de5bb98151784a

See more details on using hashes here.

File details

Details for the file mmgroup-1.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mmgroup-1.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a4201c8d7dade6a72eafba2f0f38ed447ad6221f3cb8f56d7153caf7f9036019
MD5 e1e7dc16fd67d8b3485bdac906f00fe1
BLAKE2b-256 d07fef06f1f123614da6ac2e8bf25d6f3b738af70e2ead4fa946da81412c82d0

See more details on using hashes here.

File details

Details for the file mmgroup-1.0.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mmgroup-1.0.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8e771c9b798e26e57923aeca7239f47e3e4bcbc5860a285c20e7681b1fddeb95
MD5 c1d3da18a7f9865fb31f42f2f75c3f6e
BLAKE2b-256 6d87694c3812c4b5907ead336161599d7fc941b749d6d4bda289148aa5c6bcea

See more details on using hashes here.

File details

Details for the file mmgroup-1.0.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: mmgroup-1.0.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for mmgroup-1.0.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 37a63d7821e47495c75e07d65bfc9a74edf364a95c2041a556c4615d3a7a39c7
MD5 1ab15643b5f3f8616de61f5a04e48951
BLAKE2b-256 15e8eefe4d1e10e00092a8d2a1169ccbda8cddcd8b36260e8e1fdbe3a923dbe4

See more details on using hashes here.

File details

Details for the file mmgroup-1.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mmgroup-1.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 caa50c2c80a5a2964c19230adb721a958249f984bae3a4ea08964b3d0e0f9186
MD5 a07d577f971d213c6d88f3cb9e5e3b3d
BLAKE2b-256 25a7a4888dce165810271af48ea45fa73754034d6d18bb160e6b1582c7462bef

See more details on using hashes here.

File details

Details for the file mmgroup-1.0.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mmgroup-1.0.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0ca5c2252c21898286bf374de80a7f21902f1ce9e600f0b1c9f36fe5806f2ce6
MD5 0a27127fa981c742073704162928b2af
BLAKE2b-256 6bde8e850326215a5553bc143625dd4183115786f4a6df6c95d5c1276723cdae

See more details on using hashes here.

File details

Details for the file mmgroup-1.0.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: mmgroup-1.0.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for mmgroup-1.0.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d6ef4130c5aeeabd0aa60a5cf68fd463967ba323880664518a506730fff1c623
MD5 9e87a483d542143f13040ca1445d34d0
BLAKE2b-256 c161765ba412cf93ccd7f553a802dbdc0d500c73e84aa2c3bae2bcfc4a944a48

See more details on using hashes here.

File details

Details for the file mmgroup-1.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mmgroup-1.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9d1e3dc532406a6ce3bb1a37cb6779ed35858e4b21b8765de8fbdded8865537a
MD5 883ac5dc03fd0d29d24814ed31152ba3
BLAKE2b-256 b7bd14c0771f6eb360d2becf004835bb94dd21cf55909b0b661342284c4fe0b1

See more details on using hashes here.

File details

Details for the file mmgroup-1.0.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mmgroup-1.0.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bf322c8593ef7f3fbff973bdfa371a048501750ce64cf7cb6196bf2dfab2266f
MD5 31af9baddc8e329943158f5d94e6b2a6
BLAKE2b-256 cda3621eb6d0f5a5db47843650cbdda42b359f52b85e46d6c1fdcc3588914758

See more details on using hashes here.

File details

Details for the file mmgroup-1.0.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: mmgroup-1.0.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for mmgroup-1.0.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 243470256232abca0e6251faa36bad0ed1b474126476bf8139ed192ec20f7c41
MD5 1a99d07ba1723e7e794ef98dfcbf6953
BLAKE2b-256 473cf0e6a8084e8775794a148f52a6af04e3b60d2faffbe910ad73f69e9396cc

See more details on using hashes here.

File details

Details for the file mmgroup-1.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mmgroup-1.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2faa9935eb34f72eda1460217f17b45c318ee616c2d280733e9622166fd3c2c7
MD5 2feda867b36779bf7a5376af3bb8c372
BLAKE2b-256 99c2eaf2ddf14958112710151c51ef6b6d6eb4d6032951d3d598dfa9c6a65a8c

See more details on using hashes here.

File details

Details for the file mmgroup-1.0.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mmgroup-1.0.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 27491955a85cf5177aedea65d64f1cde12dde9ed1bdbc85e75871c57633dad46
MD5 370c511d5c75a5881eed0113ced2c198
BLAKE2b-256 9f3dbee9efd68d2439f1d819e3de77119a02b5d468d1d21394c74b868ef08095

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page