Skip to main content

Python wrapper for MurmurHash (MurmurHash3), a set of fast and robust hash functions.

Project description

mmh3

GitHub Super-Linter Build PyPi Version Python Versions License: CC0-1.0 Total Downloads Recent Downloads Conda Version

mmh3 is a Python wrapper for MurmurHash (MurmurHash3), a set of fast and robust non-cryptographic hash functions invented by Austin Appleby.

Combined with probabilistic techniques like a Bloom filter, MinHash, and feature hashing, mmh3 allows you to develop high-performance systems in fields such as data mining, machine learning, and natural language processing.

Another common use of mmh3 is to calculate favicon hashes used by Shodan, the world's first IoT search engine.

How to use

Install:

pip install mmh3 # for macOS, use "pip3 install mmh3" and python3

Quickstart:

>>> import mmh3
>>> mmh3.hash("foo") # returns a 32-bit signed int
-156908512
>>> mmh3.hash("foo", 42) # uses 42 as a seed
-1322301282
>>> mmh3.hash("foo", signed=False) # returns a 32-bit unsigned int
4138058784

Other functions:

>>> mmh3.hash64("foo") # two 64 bit signed ints (by using the 128-bit algorithm as its backend)
(-2129773440516405919, 9128664383759220103)
>>> mmh3.hash64("foo", signed=False) #  two 64 bit unsigned ints
(16316970633193145697, 9128664383759220103)
>>> mmh3.hash128("foo", 42) # 128 bit unsigned int
215966891540331383248189432718888555506
>>> mmh3.hash128("foo", 42, signed=True) # 128 bit signed int
-124315475380607080215185174712879655950
>>> mmh3.hash_bytes("foo") # 128 bit value as bytes
'aE\xf5\x01W\x86q\xe2\x87}\xba+\xe4\x87\xaf~'
>>> import numpy as np
>>> a = np.zeros(2 ** 32, dtype=np.int8)
>>> mmh3.hash_bytes(a)
b'V\x8f}\xad\x8eNM\xa84\x07FU\x9c\xc4\xcc\x8e'

Beware that hash64 returns two values, because it uses the 128-bit version of MurmurHash3 as its backend.

hash_from_buffer hashes byte-likes without memory copying. The method is suitable when you hash a large memory-view such as numpy.ndarray.

>>> mmh3.hash_from_buffer(numpy.random.rand(100))
-2137204694
>>> mmh3.hash_from_buffer(numpy.random.rand(100), signed=False)
3812874078

hash64, hash128, and hash_bytes have the third argument for architecture optimization. Use True for x64 and False for x86 (default: True):

>>> mmh3.hash64("foo", 42, True) 
(-840311307571801102, -6739155424061121879)

Changelog

3.1.0 (2023-03-24)

  • Add support for Python 3.10 and 3.11. Thanks wouter bolsterlee and Dušan Nikolić!
  • Drop support for Python 3.6; remove legacy code for Python 2.x at the source code level.
  • Add support for 32-bit architectures such as i686 and armv7l. From now on, hash and hash_from_buffer on these architectures will generate the same hash values as those on other environments. Thanks Danil Shein!
  • In relation to the above, manylinux2014_i686 wheels are now available.
  • Support for hashing huge data (>16GB). Thanks arieleizenberg!

3.0.0 (2021-02-23)

  • Python wheels are now available, thanks to the power of cibuildwheel.
    • Supported platforms are manylinux1_x86_64, manylinux2010_x86_64, manylinux2014_aarch64, win32, win_amd64, macosx_10_9_x86_64, and macosx_11_0_arm64 (Apple Silicon).
  • Add support for newer macOS environments. Thanks Matthew Honnibal!
  • Drop support for Python 2.7, 3.3, 3.4, and 3.5.
  • Add support for Python 3.7, 3.8, and 3.9.
  • Migrate Travis CI and AppVeyor to GitHub Actions.

2.5.1 (2017-10-31)

  • Bugfix for hash_bytes. Thanks doozr!

See CHANGELOG.md for the complete changelog.

License

CC0-1.0.

Known Issues

Getting different results from other MurmurHash3-based libraries

By default, mmh3 returns signed values for 32-bit and 64-bit versions and unsigned values for hash128, due to historical reasons. Please use the keyword argument signed to obtain a desired result.

For compatibility with Google Guava (Java), see https://stackoverflow.com/questions/29932956/murmur3-hash-different-result-between-python-and-java-implementation

Unexpected results when given non 32-bit seeds

Version 2.4 changed the type of seeds from signed 32-bit int to unsigned 32-bit int. The resulting values with signed seeds still remain the same as before, as long as they are 32-bit.

>>> mmh3.hash("aaaa", -1756908916) # signed representation for 0x9747b28c
1519878282
>>> mmh3.hash("aaaa", 2538058380) # unsigned representation for 0x9747b28c
1519878282

Be careful so that these seeds do not exceed 32-bit. Unexpected results may happen with invalid values.

>>> mmh3.hash("foo", 2 ** 33)
-156908512
>>> mmh3.hash("foo", 2 ** 34)
-156908512

Authors

MurmurHash3 was originally developed by Austin Appleby and distributed under public domain.

Ported and modified for Python by Hajime Senuma.

See also

Tutorials (High-Performance Computing)

The following textbooks and tutorials are great sources to learn how to use mmh3 (and other hash algorithms in general) for high-performance computing.

Tutorials (Internet of Things)

Shodan, the world's first IoT search engine, uses MurmurHash3 hash values for favicons (icons associated with web pages). ZoomEye follows Shodan's convention. Calculating these values with mmh3 is useful for OSINT and cybersecurity activities.

Similar libraries

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mmh3-3.1.0.tar.gz (12.7 kB view details)

Uploaded Source

Built Distributions

mmh3-3.1.0-cp311-cp311-win_amd64.whl (15.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

mmh3-3.1.0-cp311-cp311-win32.whl (15.0 kB view details)

Uploaded CPython 3.11 Windows x86

mmh3-3.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (39.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

mmh3-3.1.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

mmh3-3.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (38.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

mmh3-3.1.0-cp311-cp311-macosx_11_0_arm64.whl (13.5 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

mmh3-3.1.0-cp311-cp311-macosx_10_9_x86_64.whl (12.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

mmh3-3.1.0-cp310-cp310-win_amd64.whl (15.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

mmh3-3.1.0-cp310-cp310-win32.whl (15.0 kB view details)

Uploaded CPython 3.10 Windows x86

mmh3-3.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (39.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

mmh3-3.1.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

mmh3-3.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (38.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

mmh3-3.1.0-cp310-cp310-macosx_11_0_arm64.whl (13.5 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

mmh3-3.1.0-cp310-cp310-macosx_10_9_x86_64.whl (12.8 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

mmh3-3.1.0-cp39-cp39-win_amd64.whl (15.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

mmh3-3.1.0-cp39-cp39-win32.whl (15.0 kB view details)

Uploaded CPython 3.9 Windows x86

mmh3-3.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (38.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

mmh3-3.1.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (37.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

mmh3-3.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (38.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

mmh3-3.1.0-cp39-cp39-macosx_11_0_arm64.whl (13.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

mmh3-3.1.0-cp39-cp39-macosx_10_9_x86_64.whl (12.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

mmh3-3.1.0-cp38-cp38-win_amd64.whl (15.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

mmh3-3.1.0-cp38-cp38-win32.whl (15.0 kB view details)

Uploaded CPython 3.8 Windows x86

mmh3-3.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (39.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

mmh3-3.1.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

mmh3-3.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (38.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

mmh3-3.1.0-cp38-cp38-macosx_11_0_arm64.whl (13.5 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

mmh3-3.1.0-cp38-cp38-macosx_10_9_x86_64.whl (12.8 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

mmh3-3.1.0-cp37-cp37m-win_amd64.whl (15.4 kB view details)

Uploaded CPython 3.7m Windows x86-64

mmh3-3.1.0-cp37-cp37m-win32.whl (15.0 kB view details)

Uploaded CPython 3.7m Windows x86

mmh3-3.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (39.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

mmh3-3.1.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

mmh3-3.1.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (38.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

mmh3-3.1.0-cp37-cp37m-macosx_10_9_x86_64.whl (12.8 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file mmh3-3.1.0.tar.gz.

File metadata

  • Download URL: mmh3-3.1.0.tar.gz
  • Upload date:
  • Size: 12.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for mmh3-3.1.0.tar.gz
Algorithm Hash digest
SHA256 9b0f2b2ab4a915333c9d1089572e290a021ebb5b900bb7f7114dccc03995d732
MD5 fa071dbe4ba5e39e0aa4716dea02c6e2
BLAKE2b-256 736533dce4b13a77ed6aeb1f41994240cc4d3c49fb79b3acdac9a502ae6e254d

See more details on using hashes here.

File details

Details for the file mmh3-3.1.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: mmh3-3.1.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 15.4 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for mmh3-3.1.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5edb5ac882c04aff8a2a18ae8b74a0c339ac9b83db9820d8456f518bb558e0d8
MD5 fa25a8334a76d9fc956e7b48441aff23
BLAKE2b-256 a9fb61c2b90f05b6496c3ac85120f39447d02b3448f310181225a947ae358aad

See more details on using hashes here.

File details

Details for the file mmh3-3.1.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: mmh3-3.1.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 15.0 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for mmh3-3.1.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 a886d9ce995a4bdfd7a600ddf61b9015cccbc73c50b898f8ff3c78af24384710
MD5 8f2ac9d0d2d4e99a98c4b6b36fb7a0e2
BLAKE2b-256 268e8520b7492b9c2851292cc30a52c70aab5d455eed271edeea71f5169373b7

See more details on using hashes here.

File details

Details for the file mmh3-3.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for mmh3-3.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 524e29dfe66499695f9496edcfc96782d130aabd6ba12c50c72372163cc6f3ea
MD5 f3c761b11375395ecac4d2596e460665
BLAKE2b-256 8fe9442c2b324862cc43793f95cbe782f3ee3a2c437dba1ebc1c40fe8ccb053b

See more details on using hashes here.

File details

Details for the file mmh3-3.1.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mmh3-3.1.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2a4d471eb75df8320061ab3b8cbe11c970be9f116b01bc2222ebda9c0a777520
MD5 2c33145c3a83ea58bceab7372c626168
BLAKE2b-256 407c29c361b77f94b0310332789e70aae43a914c6203b167b55e08f7ebf3e954

See more details on using hashes here.

File details

Details for the file mmh3-3.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mmh3-3.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 66bdb06a03074e65e614da1aa199b1d16c90608bec9d8fc3faa81d887ffe93cc
MD5 ea34b3afc75bef257482e3bae0714821
BLAKE2b-256 54a93020f3f9e93c060279c784ad2d215bfcb456c2064a01bb06911d5b82211d

See more details on using hashes here.

File details

Details for the file mmh3-3.1.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mmh3-3.1.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0109320f7e0e262123ff4f1acd06acfbc8b3bf19cc13d98c0bc369264430aaeb
MD5 d3ba722c53a9ed8893792fe5cb972871
BLAKE2b-256 bf51b705297e731d663cf3206c6a3c277468730137d46446ad09582be15bfa95

See more details on using hashes here.

File details

Details for the file mmh3-3.1.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mmh3-3.1.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c271472325b70d64a4fbb1f2e964ca5b093ac10258e1390f8408890b065868fe
MD5 da8cbac840a55b14fff09a07d1c074f1
BLAKE2b-256 3d702ebc0fd1c05c26f008709f27974a12eefdf6c26d927212764f023460eeb8

See more details on using hashes here.

File details

Details for the file mmh3-3.1.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: mmh3-3.1.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 15.4 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for mmh3-3.1.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 29e878e7467a000f34ab68c218ad7ad81312c0a94bc10df3c50a48bcad39dd83
MD5 45cc62b0ef2c22225cb456bde125f4b4
BLAKE2b-256 777d2ea96011bf1219b2f83c54d861bddfd6858c336ec8104aebee678e547fb8

See more details on using hashes here.

File details

Details for the file mmh3-3.1.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: mmh3-3.1.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 15.0 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for mmh3-3.1.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 b8ed7a2361718795a1b519a08d05f44947a20b27e202b53946561a00dde669c1
MD5 9798fdd51359d01bc447950929e13f43
BLAKE2b-256 d28640aa4151c0d9b61f26dd300ac034e39e6b780665a5593b28fe672d90deee

See more details on using hashes here.

File details

Details for the file mmh3-3.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for mmh3-3.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9e751f5433417a21c2060b0efa1afc67cfbe29977c867336148c8edb086fae70
MD5 d10154de8093b0cb9ed0329de7e500fb
BLAKE2b-256 287d4eaa4e25431a73c0de903f27004a8dc1655b3d6cb0b1cf525d0a4dcc9d7e

See more details on using hashes here.

File details

Details for the file mmh3-3.1.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mmh3-3.1.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1230930fbf2faec4ddf5b76d0768ae73c102de173c301962bdd468177275adf9
MD5 38921a89b440aa8ecd0cbad822f9b65e
BLAKE2b-256 abbd8f30e50f16a1ac486c219e2505484a5d53cf6e138b2868cafddb173b890d

See more details on using hashes here.

File details

Details for the file mmh3-3.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mmh3-3.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bdb863b89c1b34e3681d4a3b15d424734940eb8036f3457cb35ef34fb87a503c
MD5 f8243670a6d67fe9c0623fe5dd682f75
BLAKE2b-256 1ea1afaeb2bb0dfeea9e33ac783283229df1a41418f4367d3ad09b66371ee9b9

See more details on using hashes here.

File details

Details for the file mmh3-3.1.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mmh3-3.1.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 04ac865319e5b36148a4b6cdf27f8bda091c47c4ab7b355d7f353dfc2b8a3cce
MD5 5c47208cd89f15d2bb0e4f2770314572
BLAKE2b-256 9266bde2e801bc662ab497b8c15507c48bb343907734a6f9e16f56339e154879

See more details on using hashes here.

File details

Details for the file mmh3-3.1.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mmh3-3.1.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 16ee043b1bac040b4324b8baee39df9fdca480a560a6d74f2eef66a5009a234e
MD5 f75eafe8a936f47589e142c633efd7c9
BLAKE2b-256 d054e1a7d2fc78a4b13b6901b74d085ec2c80cf88524b872e5e2bdb24971b962

See more details on using hashes here.

File details

Details for the file mmh3-3.1.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: mmh3-3.1.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 15.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for mmh3-3.1.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 03e04b3480e71828f48d17653451a3286555f0534942cb6ba93065b10ad5f9dc
MD5 d8bdd72e2e51ee56cb844a98cb4c9d1f
BLAKE2b-256 f69baa1b12c54d3f345f750fe72f9dbe9f417dcc5417b168c1131b20d63dc7f3

See more details on using hashes here.

File details

Details for the file mmh3-3.1.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: mmh3-3.1.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 15.0 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for mmh3-3.1.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 4459bec818f534dc8378568ad89ab310ff47cda3e00ab322edce48dd899bba32
MD5 3a2e293ec2280d7096d05cc80d82ad2a
BLAKE2b-256 14b8a9b1bc4a5596ca2585851462c890ddfb05ff82cbc536b1c70d408a09c509

See more details on using hashes here.

File details

Details for the file mmh3-3.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for mmh3-3.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f906833753b4ddcb690c2c1b74e77725868bc3a8b762b7a77737d08be89ae41d
MD5 73744e87883f9460242c6428236e2d3a
BLAKE2b-256 e954b4fad81ed89cea0f158ae13c51c183073b27c92cda1fa3f04a543ea2634a

See more details on using hashes here.

File details

Details for the file mmh3-3.1.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mmh3-3.1.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8d2aa4d422c7c088bbc5d367b45431268ebe6742a0a64eade93fab708e25757c
MD5 f982146b8de703ba5d6be620d98ffac7
BLAKE2b-256 e556918a132e9e7c6fa83df3ecfb56b7f23e01f96160f3295a2881f495d2015c

See more details on using hashes here.

File details

Details for the file mmh3-3.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mmh3-3.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 72b5685832a7a87a55ebff481794bc410484d7bd4c5e80dae4d8ac50739138ef
MD5 2a849f1d26939660a35ec511ea0e359c
BLAKE2b-256 68f75f652712d52e7ee4b8c2cf9923b71e171d6cf1925959f7fa5fe74b392d6d

See more details on using hashes here.

File details

Details for the file mmh3-3.1.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mmh3-3.1.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ced92a0e285a9111413541c197b0c17d280cee96f7c564b258caf5de5ab8ee01
MD5 91b22b597d5e25c14837ebeff2d96408
BLAKE2b-256 9a802ac8ddf8736b8eafd2cbf4712e26b1a23e3b094cdbfe9444d9c9b067317b

See more details on using hashes here.

File details

Details for the file mmh3-3.1.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mmh3-3.1.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3b22832d565128be83d69f5d49243bb567840a954df377c9f5b26646a6eec39b
MD5 b05bf5443f144554b652a959cfdbe4e6
BLAKE2b-256 524da0946cf099ca5a90e092f128c165d3039b1d585f7c2e0a1ea9cc6e89f796

See more details on using hashes here.

File details

Details for the file mmh3-3.1.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: mmh3-3.1.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 15.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for mmh3-3.1.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 cbc2917df568aeb86ec5aa863bfb20fa14e01039cbdce7650efbabc30960df49
MD5 780109b46cf06a95ee504402315d5a31
BLAKE2b-256 c7f72d9fec77309589d3dec5d70b5cc902638ad0ce9b00a667e1ac3ea0698593

See more details on using hashes here.

File details

Details for the file mmh3-3.1.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: mmh3-3.1.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 15.0 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for mmh3-3.1.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 d91e696925f208d28f3bb7bdf29815524ce955248276af256519bd3538c411ce
MD5 105beab81d6d6b8aaf68a3998d8a2172
BLAKE2b-256 56ba9a3d845349d86f0dae19a5f1a8cbd2645e01e3fd9658dd36639a1e123881

See more details on using hashes here.

File details

Details for the file mmh3-3.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for mmh3-3.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 87cdbc6e70099ad92f17a28b4054ffb1938657e8fb7c1e4e03b194a1b4683fd6
MD5 354271f57747d7dcf5ba0cd1d53b2aa0
BLAKE2b-256 703ae307d98c5bed155e7b4074a6d934f69cfd55561927c43d1d4b0a62a24a92

See more details on using hashes here.

File details

Details for the file mmh3-3.1.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mmh3-3.1.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2e6eba88e5c1a2778f3de00a9502e3c214ebb757337ece2a7d71e060d188ddfa
MD5 b10da2587bb658351c0fa24cd79823e6
BLAKE2b-256 504d12127343b12373820ff13071656bde3bb2e90cde0eca00ea090e04206001

See more details on using hashes here.

File details

Details for the file mmh3-3.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mmh3-3.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6dd81321d14f62aa3711f30533c85a74dc7596e0fee63c8eddd375bc92ab846c
MD5 cf794597f6d06fc565aad219c5bd4c56
BLAKE2b-256 8853f90b91db41bf8c53fdd443b807855d0b9138069d96f8f17d10d3864a24ba

See more details on using hashes here.

File details

Details for the file mmh3-3.1.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mmh3-3.1.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bf4f3f20a8b8405c08b13bc9e4ac33bf55129b50b535cd07ce1891b7f96326ac
MD5 325e02a7d2596cc5a666a5f20ef14c9d
BLAKE2b-256 46868fb02abac4e5e2f2647b3cedc1aa2926b25c735a4811041ab441088f4172

See more details on using hashes here.

File details

Details for the file mmh3-3.1.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mmh3-3.1.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9977fb81f8c66f4eee8439734a18dba7826fe78723d15ab53f42db977005be0f
MD5 bc234ab553fc43cce812ee183ee35dd2
BLAKE2b-256 13bf0da337119c81cdb913893e8cb5a48cba22973b3f850fa8079c04ec60573f

See more details on using hashes here.

File details

Details for the file mmh3-3.1.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: mmh3-3.1.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 15.4 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for mmh3-3.1.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 731d37f089b6c212fab1beea24e673161146eb6c76baf9ac074a3424d1172d41
MD5 1c5169dca80b921bc722e2a59323c216
BLAKE2b-256 aeba85543a2dfac95acc050379279de7f73ce50cf1d15f27189db29391eb31ef

See more details on using hashes here.

File details

Details for the file mmh3-3.1.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: mmh3-3.1.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 15.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for mmh3-3.1.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 d196cc035c2238493248522ae4e54c3cb790549b1564f6dea4d88dfe4b326313
MD5 954b343d5e42ea4a835e910669621bf4
BLAKE2b-256 5fee76322922329013db583f8593428f16b49f5ac95e087843f1635e6532a0b8

See more details on using hashes here.

File details

Details for the file mmh3-3.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for mmh3-3.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cd781b115cf649811cfde76368c33d2e553b6f88bb41131c314f30d8e65e9d24
MD5 0ea661f30e02be1a60261df1d3e50997
BLAKE2b-256 caf670a232d0c85ac51834727d154e8217d31256a72e074ac50b418f000bb025

See more details on using hashes here.

File details

Details for the file mmh3-3.1.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mmh3-3.1.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7d0936a82438e340636a11b9a938378870fc1c7a139632dac09a9a9277351704
MD5 f5cef7ccd147be251bb08a5fdd8e088d
BLAKE2b-256 6f3d91fe57da658900393663ca94d1e9cf79d08daaa3cabcc8187230b97d477b

See more details on using hashes here.

File details

Details for the file mmh3-3.1.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mmh3-3.1.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f48bb0a867077acc1f548591ad49506389f36d18f36dccd10becf071e5cbdda4
MD5 6f50a2885af666bac75ee617822bc978
BLAKE2b-256 f5547b1e799669197fd487831fa26fa242a21d50da4f7124ed497d4b0f4cc48a

See more details on using hashes here.

File details

Details for the file mmh3-3.1.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mmh3-3.1.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 190fd10981fbd6c67e10ce3b56bcc021562c0df0fee2e2864347d64e65b1783a
MD5 7adbf989b83c1d3012bf11616fcfb00c
BLAKE2b-256 3f671639b82153e32a1a8cd930d61214d2af527efd4db0f07ac2d07691238bb4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page