Skip to main content

OpenMMLab 3D Human Parametric Model Toolbox and Benchmark

Project description



Documentation actions codecov PyPI LICENSE Percentage of issues still open

Introduction

English | 简体中文

MMHuman3D is an open-source PyTorch-based codebase for the use of 3D human parametric models in computer vision and computer graphics. It is a part of the OpenMMLab project.

The main branch works with PyTorch 1.7+.

If you are interested in multi-view motion capture, please refer to XRMoCap for more details.

https://user-images.githubusercontent.com/62529255/144362861-e794b404-c48f-4ebe-b4de-b91c3fbbaa3b.mp4

Major Features

  • Reproducing popular methods with a modular framework

    MMHuman3D reimplements popular methods, allowing users to reproduce SOTAs with one line of code. The modular framework is convenient for rapid prototyping: the users may attempt various hyperparameter settings and even network architectures, without actually modifying the code.

  • Supporting various datasets with a unified data convention

    With the help of a convention toolbox, a unified data format HumanData is used to align all supported datasets. Preprocessed data files are also available.

  • Versatile visualization toolbox

    A suite of differentiale visualization tools for human parametric model rendering (including part segmentation, depth map and point clouds) and conventional 2D/3D keypoints are available.

News

  • 2023-04-05: MMHuman3D v0.11.0 is released. Major updates include:
  • 2022-10-12: MMHuman3D v0.10.0 is released. Major updates include:
    • Add webcam demo and real-time renderer
    • Update dataloader to speed up training
    • Add balanced MSE loss for imbalanced HMR training
  • 2022-07-08: MMHuman3D v0.9.0 is released. Major updates include:
    • Support SMPL-X estimation with ExPose for simultaneous recovery of face, hands and body
    • Support new body model STAR
    • Release of GTA-Human dataset with SPIN-FT (51.98 mm) and PARE-FT (46.84 mm) baselines! (Official)
    • Refactor registration and improve performance of SPIN to 57.54 mm

Benchmark and Model Zoo

More details can be found in model_zoo.md.

Supported body models:

(click to collapse)
  • SMPL (SIGGRAPH Asia'2015)
  • SMPL-X (CVPR'2019)
  • MANO (SIGGRAPH ASIA'2017)
  • FLAME (SIGGRAPH ASIA'2017)
  • STAR (ECCV'2020)

Supported methods:

(click to collapse)

Supported datasets:

(click to collapse)

We will keep up with the latest progress of the community, and support more popular methods and frameworks.

If you have any feature requests, please feel free to leave a comment in the wishlist.

Get Started

Please see getting_started.md for the basic usage of MMHuman3D.

License

This project is released under the Apache 2.0 license. Some supported methods may carry additional licenses.

Citation

If you find this project useful in your research, please consider cite:

@misc{mmhuman3d,
    title={OpenMMLab 3D Human Parametric Model Toolbox and Benchmark},
    author={MMHuman3D Contributors},
    howpublished = {\url{https://github.com/open-mmlab/mmhuman3d}},
    year={2021}
}

Contributing

We appreciate all contributions to improve MMHuman3D. Please refer to CONTRIBUTING.md for the contributing guideline.

Acknowledgement

MMHuman3D is an open source project that is contributed by researchers and engineers from both the academia and the industry. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedbacks. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new models.

Projects in OpenMMLab

  • MMCV: OpenMMLab foundational library for computer vision.
  • MIM: MIM Installs OpenMMLab Packages.
  • MMClassification: OpenMMLab image classification toolbox and benchmark.
  • MMDetection: OpenMMLab detection toolbox and benchmark.
  • MMDetection3D: OpenMMLab next-generation platform for general 3D object detection.
  • MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark.
  • MMAction2: OpenMMLab next-generation action understanding toolbox and benchmark.
  • MMTracking: OpenMMLab video perception toolbox and benchmark.
  • MMPose: OpenMMLab pose estimation toolbox and benchmark.
  • MMEditing: OpenMMLab image and video editing toolbox.
  • MMOCR: A Comprehensive Toolbox for Text Detection, Recognition and Understanding.
  • MMGeneration: OpenMMLab next-generation toolbox for generative models.
  • MMFlow: OpenMMLab optical flow toolbox and benchmark.
  • MMFewShot: OpenMMLab FewShot Learning Toolbox and Benchmark.
  • MMHuman3D: OpenMMLab 3D Human Parametric Model Toolbox and Benchmark.
  • MMSelfSup: OpenMMLab self-supervised learning toolbox and benchmark.
  • MMRazor: OpenMMLab model compression toolbox and benchmark.
  • MMDeploy: OpenMMLab model deployment framework.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mmhuman3d-0.11.0.tar.gz (355.9 kB view details)

Uploaded Source

Built Distribution

mmhuman3d-0.11.0-py2.py3-none-any.whl (484.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file mmhuman3d-0.11.0.tar.gz.

File metadata

  • Download URL: mmhuman3d-0.11.0.tar.gz
  • Upload date:
  • Size: 355.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for mmhuman3d-0.11.0.tar.gz
Algorithm Hash digest
SHA256 6e7cfe63fcb8c32a863de77a4be31f83abbd70bd3b69776a6c0417821bad7b2e
MD5 f5746bc9742089217f87df646b577c32
BLAKE2b-256 0426c7360df3253670d42f3046f6847ba3e699dd6273bcca49a84467e1569ba9

See more details on using hashes here.

File details

Details for the file mmhuman3d-0.11.0-py2.py3-none-any.whl.

File metadata

  • Download URL: mmhuman3d-0.11.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 484.1 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for mmhuman3d-0.11.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 89c071f0b7560758c4f0365280fff299e9cec2425792238e9b4513c506799451
MD5 275ef8de68a2e29a102c6e656f254c13
BLAKE2b-256 a0be477fe12b5ccad566e8ccb06f680408ec0aee76e86b6dc213af20ca53e054

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page