Skip to main content

A toolkit for multimodal information processing

Project description

MMKit: Multimodal Kit

A toolkit for multimodal information processing

Installation

    pip install mmkit

An example

A Neural Network in PyTorch for Tabular Data with Categorical Embeddings. Here

from mmk.prediction import MultimodalPredictionModel
input_features=[ ... ]
categorical_features = [...]
output_feature = "..."
output_error=0
all_features=input_features+[output_feature]
mmpm=MultimodalPredictionModel("data/multimodal_data.csv",
                               all_features,
                               categorical_features,
                               output_feature,
                               output_error)
mmpm.train()
acc=mmpm.get_last_accuracy()
print(acc)

License

The mmkit project is provided by Donghua Chen.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mmkit-0.0.1a0.tar.gz (13.4 kB view details)

Uploaded Source

Built Distribution

mmkit-0.0.1a0-py3-none-any.whl (12.1 kB view details)

Uploaded Python 3

File details

Details for the file mmkit-0.0.1a0.tar.gz.

File metadata

  • Download URL: mmkit-0.0.1a0.tar.gz
  • Upload date:
  • Size: 13.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.6

File hashes

Hashes for mmkit-0.0.1a0.tar.gz
Algorithm Hash digest
SHA256 7a22ae9ecdde9a33855c1991af5fe6635f3c1db178d8698aa0e5b35c0f74685d
MD5 08a54f3981828078d63d5ae52b52e1d4
BLAKE2b-256 dc521da5c1fd2d4d0584e58aee4047305af6461067a88f21b040cc3e9ab8babf

See more details on using hashes here.

File details

Details for the file mmkit-0.0.1a0-py3-none-any.whl.

File metadata

  • Download URL: mmkit-0.0.1a0-py3-none-any.whl
  • Upload date:
  • Size: 12.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.6

File hashes

Hashes for mmkit-0.0.1a0-py3-none-any.whl
Algorithm Hash digest
SHA256 9ed3e56f280d6d26a846a49997af020b0e803a54022d99395e34bf408546df90
MD5 52344e4eb0a6ea27c25076c05035b277
BLAKE2b-256 2919ba6e3c23b42b3b6d659f8514dad3e0daf94ca500cd4ed734e28b90b879f8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page