Skip to main content

OpenMMLab Pose Estimation Toolbox and Benchmark.

Project description

Introduction

English | 简体中文

MMPose is an open-source toolbox for pose estimation based on PyTorch. It is a part of the OpenMMLab project.

The master branch works with PyTorch 1.5+.

https://user-images.githubusercontent.com/15977946/124654387-0fd3c500-ded1-11eb-84f6-24eeddbf4d91.mp4

Major Features
  • Support diverse tasks

    We support a wide spectrum of mainstream pose analysis tasks in current research community, including 2d multi-person human pose estimation, 2d hand pose estimation, 2d face landmark detection, 133 keypoint whole-body human pose estimation, 3d human mesh recovery, fashion landmark detection and animal pose estimation. See demo.md for more information.

  • Higher efficiency and higher accuracy

    MMPose implements multiple state-of-the-art (SOTA) deep learning models, including both top-down & bottom-up approaches. We achieve faster training speed and higher accuracy than other popular codebases, such as HRNet. See benchmark.md for more information.

  • Support for various datasets

    The toolbox directly supports multiple popular and representative datasets, COCO, AIC, MPII, MPII-TRB, OCHuman etc. See data_preparation.md for more information.

  • Well designed, tested and documented

    We decompose MMPose into different components and one can easily construct a customized pose estimation framework by combining different modules. We provide detailed documentation and API reference, as well as unittests.

News

  • 2022-02-11: MMPose v0.23.0 was released. Major updates includes:
    • Release MMPose Webcam API: A simple yet powerful tools to develop interactive webcam applications with MMPose functions
    • Support CPU training and testing
  • 2021-12-29: OpenMMLab Open Platform is online! Try our pose estimation demo

Installation

Please refer to install.md for installation guide.

Get Started

Please see getting_started.md for the basic usage of MMPose. There are also tutorials:

Model Zoo

Results and models are available in the README.md of each method's config directory. A summary can be found in the Model Zoo page.

Supported algorithms:
Supported techniques:

Supported datasets:

Supported datasets:
Supported backbones:

Model Request

We will keep up with the latest progress of the community, and support more popular algorithms and frameworks. If you have any feature requests, please feel free to leave a comment in MMPose Roadmap.

Benchmark

Accuracy and Training Speed

MMPose achieves superior of training speed and accuracy on the standard keypoint detection benchmarks like COCO. See more details at benchmark.md.

Inference Speed

We summarize the model complexity and inference speed of major models in MMPose, including FLOPs, parameter counts and inference speeds on both CPU and GPU devices with different batch sizes. Please refer to inference_speed_summary.md for more details.

Data Preparation

Please refer to data_preparation.md for a general knowledge of data preparation.

FAQ

Please refer to FAQ for frequently asked questions.

Contributing

We appreciate all contributions to improve MMPose. Please refer to CONTRIBUTING.md for the contributing guideline.

Acknowledgement

MMPose is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedbacks. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new models.

Citation

If you find this project useful in your research, please consider cite:

@misc{mmpose2020,
    title={OpenMMLab Pose Estimation Toolbox and Benchmark},
    author={MMPose Contributors},
    howpublished = {\url{https://github.com/open-mmlab/mmpose}},
    year={2020}
}

License

This project is released under the Apache 2.0 license.

Projects in OpenMMLab

  • MMCV: OpenMMLab foundational library for computer vision.
  • MIM: MIM Installs OpenMMLab Packages.
  • MMClassification: OpenMMLab image classification toolbox and benchmark.
  • MMDetection: OpenMMLab detection toolbox and benchmark.
  • MMDetection3D: OpenMMLab next-generation platform for general 3D object detection.
  • MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark.
  • MMAction2: OpenMMLab next-generation action understanding toolbox and benchmark.
  • MMTracking: OpenMMLab video perception toolbox and benchmark.
  • MMPose: OpenMMLab pose estimation toolbox and benchmark.
  • MMEditing: OpenMMLab image and video editing toolbox.
  • MMOCR: A comprehensive toolbox for text detection, recognition and understanding.
  • MMGeneration: OpenMMLab next-generation toolbox for generative models.
  • MMFlow: OpenMMLab optical flow toolbox and benchmark.
  • MMFewShot: OpenMMLab fewshot learning toolbox and benchmark.
  • MMHuman3D: OpenMMLab 3D human parametric model toolbox and benchmark.
  • MMSelfSup: OpenMMLab self-supervised learning toolbox and benchmark.
  • MMRazor: OpenMMLab model compression toolbox and benchmark.
  • MMDeploy: OpenMMLab model deployment framework.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mmpose-0.23.0.tar.gz (463.1 kB view details)

Uploaded Source

Built Distribution

mmpose-0.23.0-py2.py3-none-any.whl (1.4 MB view details)

Uploaded Python 2 Python 3

File details

Details for the file mmpose-0.23.0.tar.gz.

File metadata

  • Download URL: mmpose-0.23.0.tar.gz
  • Upload date:
  • Size: 463.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for mmpose-0.23.0.tar.gz
Algorithm Hash digest
SHA256 b9173e2b6a23bfb465ecb3d3865c4248e1e5cd95cc539bc2f6a2a25c9c4ab7fc
MD5 c7d6d91bd0943ce6f9d731fc1da75046
BLAKE2b-256 018d61109308f904b172440d8816af9894a8448da4e161c437caf64c5134d9c6

See more details on using hashes here.

File details

Details for the file mmpose-0.23.0-py2.py3-none-any.whl.

File metadata

  • Download URL: mmpose-0.23.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for mmpose-0.23.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 5e82bd5e6d2fabeb6a3956c1aabbf5680ac7e65861ebd4e4fc7dd6e3c204ac19
MD5 eab400e15782b6df68958162ad96e503
BLAKE2b-256 765b77f9e4b7412b87aafff6c57088f328e4a04ee8259f1eeb5ccec38a32c9fd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page