Skip to main content

OpenMMLab Pose Estimation Toolbox and Benchmark.

Project description

Introduction

English | 简体中文

MMPose is an open-source toolbox for pose estimation based on PyTorch. It is a part of the OpenMMLab project.

The master branch works with PyTorch 1.5+.

https://user-images.githubusercontent.com/15977946/124654387-0fd3c500-ded1-11eb-84f6-24eeddbf4d91.mp4

Major Features
  • Support diverse tasks

    We support a wide spectrum of mainstream pose analysis tasks in current research community, including 2d multi-person human pose estimation, 2d hand pose estimation, 2d face landmark detection, 133 keypoint whole-body human pose estimation, 3d human mesh recovery, fashion landmark detection and animal pose estimation. See demo.md for more information.

  • Higher efficiency and higher accuracy

    MMPose implements multiple state-of-the-art (SOTA) deep learning models, including both top-down & bottom-up approaches. We achieve faster training speed and higher accuracy than other popular codebases, such as HRNet. See benchmark.md for more information.

  • Support for various datasets

    The toolbox directly supports multiple popular and representative datasets, COCO, AIC, MPII, MPII-TRB, OCHuman etc. See data_preparation.md for more information.

  • Well designed, tested and documented

    We decompose MMPose into different components and one can easily construct a customized pose estimation framework by combining different modules. We provide detailed documentation and API reference, as well as unittests.

News

Installation

MMPose depends on PyTorch and MMCV. Below are quick steps for installation. Please refer to install.md for detailed installation guide.

conda create -n open-mmlab python=3.8 pytorch=1.10 cudatoolkit=11.3 torchvision -c pytorch -y
conda activate open-mmlab
pip3 install openmim
mim install mmcv-full
git clone https://github.com/open-mmlab/mmpose.git
cd mmpose
pip3 install -e .

Getting Started

Please see getting_started.md for the basic usage of MMPose. There are also tutorials:

Model Zoo

Results and models are available in the README.md of each method's config directory. A summary can be found in the Model Zoo page.

Supported algorithms:
Supported techniques:
Supported datasets:
Supported backbones:

Model Request

We will keep up with the latest progress of the community, and support more popular algorithms and frameworks. If you have any feature requests, please feel free to leave a comment in MMPose Roadmap.

Benchmark

Accuracy and Training Speed

MMPose achieves superior of training speed and accuracy on the standard keypoint detection benchmarks like COCO. See more details at benchmark.md.

Inference Speed

We summarize the model complexity and inference speed of major models in MMPose, including FLOPs, parameter counts and inference speeds on both CPU and GPU devices with different batch sizes. Please refer to inference_speed_summary.md for more details.

Data Preparation

Please refer to data_preparation.md for a general knowledge of data preparation.

FAQ

Please refer to FAQ for frequently asked questions.

Contributing

We appreciate all contributions to improve MMPose. Please refer to CONTRIBUTING.md for the contributing guideline.

Acknowledgement

MMPose is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedbacks. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new models.

Citation

If you find this project useful in your research, please consider cite:

@misc{mmpose2020,
    title={OpenMMLab Pose Estimation Toolbox and Benchmark},
    author={MMPose Contributors},
    howpublished = {\url{https://github.com/open-mmlab/mmpose}},
    year={2020}
}

License

This project is released under the Apache 2.0 license.

Projects in OpenMMLab

  • MMCV: OpenMMLab foundational library for computer vision.
  • MIM: MIM installs OpenMMLab packages.
  • MMClassification: OpenMMLab image classification toolbox and benchmark.
  • MMDetection: OpenMMLab detection toolbox and benchmark.
  • MMDetection3D: OpenMMLab's next-generation platform for general 3D object detection.
  • MMRotate: OpenMMLab rotated object detection toolbox and benchmark.
  • MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark.
  • MMOCR: OpenMMLab text detection, recognition, and understanding toolbox.
  • MMPose: OpenMMLab pose estimation toolbox and benchmark.
  • MMHuman3D: OpenMMLab 3D human parametric model toolbox and benchmark.
  • MMSelfSup: OpenMMLab self-supervised learning toolbox and benchmark.
  • MMRazor: OpenMMLab model compression toolbox and benchmark.
  • MMFewShot: OpenMMLab fewshot learning toolbox and benchmark.
  • MMAction2: OpenMMLab's next-generation action understanding toolbox and benchmark.
  • MMTracking: OpenMMLab video perception toolbox and benchmark.
  • MMFlow: OpenMMLab optical flow toolbox and benchmark.
  • MMEditing: OpenMMLab image and video editing toolbox.
  • MMGeneration: OpenMMLab image and video generative models toolbox.
  • MMDeploy: OpenMMLab Model Deployment Framework.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mmpose-0.25.0.tar.gz (502.8 kB view details)

Uploaded Source

Built Distribution

mmpose-0.25.0-py2.py3-none-any.whl (1.5 MB view details)

Uploaded Python 2 Python 3

File details

Details for the file mmpose-0.25.0.tar.gz.

File metadata

  • Download URL: mmpose-0.25.0.tar.gz
  • Upload date:
  • Size: 502.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.7.12

File hashes

Hashes for mmpose-0.25.0.tar.gz
Algorithm Hash digest
SHA256 c6560b28767eb4135fd3fb6052f0f2034d963ec18797b8fb7897b6ebcba2c7af
MD5 0f50980316e0a11862530e42f5ced0c8
BLAKE2b-256 e75c33d9402ba19b024772cf8ab5fb740276684a17152da3c09fc380d7c70ae2

See more details on using hashes here.

File details

Details for the file mmpose-0.25.0-py2.py3-none-any.whl.

File metadata

  • Download URL: mmpose-0.25.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.7.12

File hashes

Hashes for mmpose-0.25.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 45e7b0edda347d4ec9f0820b90180dae0ff88f4e8edf86256fcecaf0c16d2809
MD5 8f7e35eaefe8cf3712566abf15025326
BLAKE2b-256 474d71db57a0808261e8822b3c993dc9c52faea5c48e21a5a0c7e4129b9a13f2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page