Open MMLab Semantic Segmentation Toolbox and Benchmark
Project description
Documentation: https://mmsegmentation.readthedocs.io/
English | 简体中文
Introduction
MMSegmentation is an open source semantic segmentation toolbox based on PyTorch. It is a part of the OpenMMLab project.
The master branch works with PyTorch 1.5+.
Major features
-
Unified Benchmark
We provide a unified benchmark toolbox for various semantic segmentation methods.
-
Modular Design
We decompose the semantic segmentation framework into different components and one can easily construct a customized semantic segmentation framework by combining different modules.
-
Support of multiple methods out of box
The toolbox directly supports popular and contemporary semantic segmentation frameworks, e.g. PSPNet, DeepLabV3, PSANet, DeepLabV3+, etc.
-
High efficiency
The training speed is faster than or comparable to other codebases.
License
This project is released under the Apache 2.0 license.
Changelog
v0.23.0 was released in 4/1/2022. Please refer to changelog.md for details and release history.
Benchmark and model zoo
Results and models are available in the model zoo.
Supported backbones:
- ResNet (CVPR'2016)
- ResNeXt (CVPR'2017)
- HRNet (CVPR'2019)
- ResNeSt (ArXiv'2020)
- MobileNetV2 (CVPR'2018)
- MobileNetV3 (ICCV'2019)
- Vision Transformer (ICLR'2021)
- Swin Transformer (ICCV'2021)
- Twins (NeurIPS'2021)
- ConvNeXt (CVPR'2022)
- BEiT (ICLR'2022)
Supported methods:
- FCN (CVPR'2015/TPAMI'2017)
- ERFNet (T-ITS'2017)
- UNet (MICCAI'2016/Nat. Methods'2019)
- PSPNet (CVPR'2017)
- DeepLabV3 (ArXiv'2017)
- BiSeNetV1 (ECCV'2018)
- PSANet (ECCV'2018)
- DeepLabV3+ (CVPR'2018)
- UPerNet (ECCV'2018)
- ICNet (ECCV'2018)
- NonLocal Net (CVPR'2018)
- EncNet (CVPR'2018)
- Semantic FPN (CVPR'2019)
- DANet (CVPR'2019)
- APCNet (CVPR'2019)
- EMANet (ICCV'2019)
- CCNet (ICCV'2019)
- DMNet (ICCV'2019)
- ANN (ICCV'2019)
- GCNet (ICCVW'2019/TPAMI'2020)
- FastFCN (ArXiv'2019)
- Fast-SCNN (ArXiv'2019)
- ISANet (ArXiv'2019/IJCV'2021)
- OCRNet (ECCV'2020)
- DNLNet (ECCV'2020)
- PointRend (CVPR'2020)
- CGNet (TIP'2020)
- BiSeNetV2 (IJCV'2021)
- STDC (CVPR'2021)
- SETR (CVPR'2021)
- DPT (ArXiv'2021)
- Segmenter (ICCV'2021)
- SegFormer (NeurIPS'2021)
- K-Net (NeurIPS'2021)
Supported datasets:
- Cityscapes
- PASCAL VOC
- ADE20K
- Pascal Context
- COCO-Stuff 10k
- COCO-Stuff 164k
- CHASE_DB1
- DRIVE
- HRF
- STARE
- Dark Zurich
- Nighttime Driving
- LoveDA
- Potsdam
- Vaihingen
- iSAID
Installation
Please refer to get_started.md for installation and dataset_prepare.md for dataset preparation.
Get Started
Please see train.md and inference.md for the basic usage of MMSegmentation. There are also tutorials for customizing dataset, designing data pipeline, customizing modules, and customizing runtime. We also provide many training tricks for better training and useful tools for deployment.
A Colab tutorial is also provided. You may preview the notebook here or directly run on Colab.
Please refer to FAQ for frequently asked questions.
Citation
If you find this project useful in your research, please consider cite:
@misc{mmseg2020,
title={{MMSegmentation}: OpenMMLab Semantic Segmentation Toolbox and Benchmark},
author={MMSegmentation Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmsegmentation}},
year={2020}
}
Contributing
We appreciate all contributions to improve MMSegmentation. Please refer to CONTRIBUTING.md for the contributing guideline.
Acknowledgement
MMSegmentation is an open source project that welcome any contribution and feedback. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible as well as standardized toolkit to reimplement existing methods and develop their own new semantic segmentation methods.
Projects in OpenMMLab
- MMCV: OpenMMLab foundational library for computer vision.
- MIM: MIM installs OpenMMLab packages.
- MMClassification: OpenMMLab image classification toolbox and benchmark.
- MMDetection: OpenMMLab detection toolbox and benchmark.
- MMDetection3D: OpenMMLab's next-generation platform for general 3D object detection.
- MMRotate: OpenMMLab rotated object detection toolbox and benchmark.
- MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark.
- MMOCR: OpenMMLab text detection, recognition, and understanding toolbox.
- MMPose: OpenMMLab pose estimation toolbox and benchmark.
- MMHuman3D: OpenMMLab 3D human parametric model toolbox and benchmark.
- MMSelfSup: OpenMMLab self-supervised learning toolbox and benchmark.
- MMRazor: OpenMMLab model compression toolbox and benchmark.
- MMFewShot: OpenMMLab fewshot learning toolbox and benchmark.
- MMAction2: OpenMMLab's next-generation action understanding toolbox and benchmark.
- MMTracking: OpenMMLab video perception toolbox and benchmark.
- MMFlow: OpenMMLab optical flow toolbox and benchmark.
- MMEditing: OpenMMLab image and video editing toolbox.
- MMGeneration: OpenMMLab image and video generative models toolbox.
- MMDeploy: OpenMMLab Model Deployment Framework.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file mmsegmentation-zzb-0.23.0.tar.gz
.
File metadata
- Download URL: mmsegmentation-zzb-0.23.0.tar.gz
- Upload date:
- Size: 417.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.8.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b335b4e866e6511b1a6528f82b79ed3a79a4643cf58b3028ffd3b686c9733b9d |
|
MD5 | 4becf71959b140cd48acdab2e0e1ed38 |
|
BLAKE2b-256 | d5056ef4c7f7493cb95afcbd6d165b95172b2efe377931273b49ca3c198fa9a3 |
File details
Details for the file mmsegmentation_zzb-0.23.0-py3-none-any.whl
.
File metadata
- Download URL: mmsegmentation_zzb-0.23.0-py3-none-any.whl
- Upload date:
- Size: 895.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.8.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 65db23cc93d851c2cf830109690de799f00bfa750dfbf8051a8671de5f8546ae |
|
MD5 | ca85f4282b9e55e70e0390895eba9777 |
|
BLAKE2b-256 | 2f17fe6e1b5a708eab4b80e9897481e6dbc0253d0e42126bcd60b088435acb2e |