Skip to main content

Open MMLab Semantic Segmentation Toolbox and Benchmark

Project description

 
OpenMMLab website HOT      OpenMMLab platform TRY IT OUT
 

PyPI - Python Version PyPI docs badge codecov license issue resolution open issues

Documentation: https://mmsegmentation.readthedocs.io/

English | 简体中文

Introduction

MMSegmentation is an open source semantic segmentation toolbox based on PyTorch. It is a part of the OpenMMLab project.

The master branch works with PyTorch 1.5+.

demo image

Major features

  • Unified Benchmark

    We provide a unified benchmark toolbox for various semantic segmentation methods.

  • Modular Design

    We decompose the semantic segmentation framework into different components and one can easily construct a customized semantic segmentation framework by combining different modules.

  • Support of multiple methods out of box

    The toolbox directly supports popular and contemporary semantic segmentation frameworks, e.g. PSPNet, DeepLabV3, PSANet, DeepLabV3+, etc.

  • High efficiency

    The training speed is faster than or comparable to other codebases.

License

This project is released under the Apache 2.0 license.

Changelog

v0.21.0 was released in 1/29/2022. Please refer to changelog.md for details and release history.

Benchmark and model zoo

Results and models are available in the model zoo.

Supported backbones:

Supported methods:

Supported datasets:

Installation

Please refer to get_started.md for installation and dataset_prepare.md for dataset preparation.

Get Started

Please see train.md and inference.md for the basic usage of MMSegmentation. There are also tutorials for customizing dataset, designing data pipeline, customizing modules, and customizing runtime. We also provide many training tricks for better training and useful tools for deployment.

A Colab tutorial is also provided. You may preview the notebook here or directly run on Colab.

Citation

If you find this project useful in your research, please consider cite:

@misc{mmseg2020,
    title={{MMSegmentation}: OpenMMLab Semantic Segmentation Toolbox and Benchmark},
    author={MMSegmentation Contributors},
    howpublished = {\url{https://github.com/open-mmlab/mmsegmentation}},
    year={2020}
}

Contributing

We appreciate all contributions to improve MMSegmentation. Please refer to CONTRIBUTING.md for the contributing guideline.

Acknowledgement

MMSegmentation is an open source project that welcome any contribution and feedback. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible as well as standardized toolkit to reimplement existing methods and develop their own new semantic segmentation methods.

Projects in OpenMMLab

  • MMCV: OpenMMLab foundational library for computer vision.
  • MMClassification: OpenMMLab image classification toolbox and benchmark.
  • MMDetection: OpenMMLab detection toolbox and benchmark.
  • MMDetection3D: OpenMMLab's next-generation platform for general 3D object detection.
  • MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark.
  • MMAction2: OpenMMLab's next-generation action understanding toolbox and benchmark.
  • MMTracking: OpenMMLab video perception toolbox and benchmark.
  • MMPose: OpenMMLab pose estimation toolbox and benchmark.
  • MMEditing: OpenMMLab image and video editing toolbox.
  • MMOCR: A Comprehensive Toolbox for Text Detection, Recognition and Understanding.
  • MMGeneration: A powerful toolkit for generative models.
  • MIM: MIM Installs OpenMMLab Packages.
  • MMFlow: OpenMMLab optical flow toolbox and benchmark.
  • MMFewShot: OpenMMLab few shot learning toolbox and benchmark.
  • MMHuman3D: OpenMMLab 3D human parametric model toolbox and benchmark.
  • MMSelfSup: OpenMMLab self-supervised learning toolbox and benchmark.
  • MMRazor: OpenMMLab Model Compression Toolbox and Benchmark.
  • MMDeploy: OpenMMLab Model Deployment Framework.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mmsegmentation-0.21.0.tar.gz (305.5 kB view details)

Uploaded Source

Built Distribution

mmsegmentation-0.21.0-py3-none-any.whl (729.8 kB view details)

Uploaded Python 3

File details

Details for the file mmsegmentation-0.21.0.tar.gz.

File metadata

  • Download URL: mmsegmentation-0.21.0.tar.gz
  • Upload date:
  • Size: 305.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for mmsegmentation-0.21.0.tar.gz
Algorithm Hash digest
SHA256 e888a4e5b120813dfdd1779f2f6b329b42339a994ba9ae66a92d59d57193bb16
MD5 c9b1b0202015771bdb71fbbed6358c4b
BLAKE2b-256 a1fa051713523f6bdf9f3d0f65d00ab17616bbb9d63c8ee3516a7a425d5f8bcc

See more details on using hashes here.

File details

Details for the file mmsegmentation-0.21.0-py3-none-any.whl.

File metadata

  • Download URL: mmsegmentation-0.21.0-py3-none-any.whl
  • Upload date:
  • Size: 729.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for mmsegmentation-0.21.0-py3-none-any.whl
Algorithm Hash digest
SHA256 970cf0caf7fdd67f2455de3d405a5742b5b5eb159ff4d86d5ba72a31b8013f17
MD5 e3c6687e2915e21478601c4ae4795091
BLAKE2b-256 bed7e59f0f46ee1f3c624365fb237f9b55f3ef89902e6492ccc45922caafaa26

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page