Skip to main content

MMSEQS Python bindings

Project description

MMseqs2 bindings for Python

This project provides bidings for mmseqs. It's still work in progress. This is the base usage scenario:

import mmseqs

#
# Demonstration of basic mmseqs2 operations
#

# Create a client
client = mmseqs.MMSeqs()

# Create a database from fasta file
# Here we specify name of the database, description and input file
# (The input can also be a Seq/SeqRecord list/iterator/etc.)
client.databases.create("test", "Test database", "example/a.fasta")

# Get description of the database
print(client.databases[0].description)

# Perform search on a database
# Note that the search queries can be a string with a patch to the FASTA file with queries
results = client.databases[0].search(
    [
        "ACTAGCTCAGTCAACTAGCTCAGTCCTCAGTCAACTAGCTCAGTCTATATATATACAAC",
        "ACTAGCTCAGTCAACTAGCTCAGTCCTCAGTCAACTAGCT",
        "ACTAGCTCAGTCAACTAGCT",
        "ACTAGCTCAGT",
    ],
    search_type="nucleotides",
)

# Load queries from file:
# results = client.databases[0].search_file("input.fasta", search_type="nucleotides")

# You can pass list of headers to get:
#   query_sequence_id
#   target_sequence_id
#   query_sequence_content
#   target_sequence_content
#   sequence_identity
#   alignment_length
#   number_of_mismatches
#   number_of_gap_openings
#   domain_start_index_query
#   domain_end_index_query
#   domain_start_index_target
#   domain_end_index_target
#   e_value
#   bit_score
# For example:
# results2 = client.databases[0].search(
#     [
#         "ACTAGCTCAGTCAACTAGCTCAGTCCTCAGTCAACTAGCTCAGTCTATATATATACAAC",
#         "ACTAGCTCAGTCAACTAGCTCAGTCCTCAGTCAACTAGCT",
#         "ACTAGCTCAGTCAACTAGCT",
#         "ACTAGCTCAGT",
#     ],
#     search_type="nucleotides",
#     headers=["query_sequence_id", "target_sequence_id", "sequence_identity", "alignment_length", "number_of_mismatches"]
# )

# results.records is a list of lists. Each item contains alignments for each query.
# Each list of alignments consists of single result
# print(results.records)

# You can also get a pandas dataframe
print(results.dataframe)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mmseqs-1.0.0.tar.gz (4.3 MB view details)

Uploaded Source

Built Distributions

mmseqs-1.0.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (36.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

mmseqs-1.0.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (35.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

mmseqs-1.0.0-cp39-cp39-macosx_10_15_x86_64.whl (11.0 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

mmseqs-1.0.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (36.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

mmseqs-1.0.0-cp38-cp38-manylinux2014_x86_64.whl (33.7 MB view details)

Uploaded CPython 3.8

mmseqs-1.0.0-cp38-cp38-manylinux2010_i686.manylinux_2_12_i686.whl (35.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

mmseqs-1.0.0-cp38-cp38-macosx_10_15_x86_64.whl (11.0 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

File details

Details for the file mmseqs-1.0.0.tar.gz.

File metadata

  • Download URL: mmseqs-1.0.0.tar.gz
  • Upload date:
  • Size: 4.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for mmseqs-1.0.0.tar.gz
Algorithm Hash digest
SHA256 cb35aeedf0f108e57d1252457e286b18ebb90b6905697bc74c9dd7f7b9ff264a
MD5 8158f10087049993a6f3524c2c7c3338
BLAKE2b-256 cd74d9984792cfbdcfa79bc934015d1ed478b86c02c82a1b8f357cebea2f14d4

See more details on using hashes here.

File details

Details for the file mmseqs-1.0.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for mmseqs-1.0.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5d50b465fc65ddb28814f821a944d82fdd8f02d81dc9daf62a7db01b28ece2b7
MD5 d087e2f188a729a00a862ed568b319de
BLAKE2b-256 47ac2239ef7f0dc4d97a1648efebc1a245eb26401f02696101d29ce8ad0f3f4f

See more details on using hashes here.

File details

Details for the file mmseqs-1.0.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for mmseqs-1.0.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 69ba8f0ee0bf29ce9754c819a00f214abad91ba8bbd959b673a7ebaa091cb352
MD5 5e0d0dc5e0065057d35926a9840454ed
BLAKE2b-256 4dbbd8a1a7952a0b3bd364d9281c4982faacf3acbb851d067097d25074fcc8fe

See more details on using hashes here.

File details

Details for the file mmseqs-1.0.0-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: mmseqs-1.0.0-cp39-cp39-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 11.0 MB
  • Tags: CPython 3.9, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for mmseqs-1.0.0-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 2ae329ce8d79193afa817836686cff4d5e1e866855858672d945a8339e47c6a4
MD5 6458728f71d534b9115082038452d116
BLAKE2b-256 34882f175d258209dc5303f2ec74b8ea59b761653fe8829dd0fdf7c1db51c7fe

See more details on using hashes here.

File details

Details for the file mmseqs-1.0.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for mmseqs-1.0.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c65f48346ab7bcf42e706f7606988d690b8d17cdfe003419cd3143d499bab10b
MD5 23d1e706910fcfec2b4cc5cdd4d195e8
BLAKE2b-256 ea2cc142edaa5673c99c2c1eace27911b4a4a674a55e2a01d65fdf170e0e401d

See more details on using hashes here.

File details

Details for the file mmseqs-1.0.0-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

  • Download URL: mmseqs-1.0.0-cp38-cp38-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 33.7 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for mmseqs-1.0.0-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fa7225a96840f0ee67562a1db74ec9229890270b11e565d74f6eb01d30016aed
MD5 a59720af9a739440b6a933879ac7637e
BLAKE2b-256 5f01b1faa4f8c99bb3009de9566c5a265488c60c2f2c49a1758eebf366712601

See more details on using hashes here.

File details

Details for the file mmseqs-1.0.0-cp38-cp38-manylinux2010_i686.manylinux_2_12_i686.whl.

File metadata

File hashes

Hashes for mmseqs-1.0.0-cp38-cp38-manylinux2010_i686.manylinux_2_12_i686.whl
Algorithm Hash digest
SHA256 7126af5e0e2612c3a2878ae11730406e661a9f276bf59defe6ab6142bc37a681
MD5 f34a1795f6ad8632299cd039e99fbb1d
BLAKE2b-256 bd90905ac58e7b2db8e6a9329f6f973a3d04e741e105aca88fe55aa8329db371

See more details on using hashes here.

File details

Details for the file mmseqs-1.0.0-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: mmseqs-1.0.0-cp38-cp38-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 11.0 MB
  • Tags: CPython 3.8, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for mmseqs-1.0.0-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 94f21e665863aff59be8db50be7c56cb31b3c457736a0a287ce062734438a1cb
MD5 5b25d7ef56ce14acc0c4b5827dccd170
BLAKE2b-256 1cc2fb4f8031f9deb000e38ed97a1d1782cc0ba36ec3f93a9cf431a9160c1e20

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page