Skip to main content

Code for microstate analysis, in combination with MNE-Python.

Project description

Microstate analysis for use with MNE-Python

A small module that works with MNE-Python to perform microstate analysis in EEG

and MEG data.

To learn more about microstate analysis, read the paper:

Pascual-Marqui, R. D., Michel, C. M., & Lehmann, D. (1995). Segmentation of

brain electrical activity into microstates: model estimation and validation.

IEEE Transactions on Biomedical Engineering.

https://ieeexplore.ieee.org/document/391164

Installation

Install this package using PIP:


pip install mne-microstates

Usage

import mne

import mne_microstates



# Load MNE sample dataset

from mne.datasets import sample

fname = sample.data_path() / 'MEG/sample/sample_audvis_filt.fif'

raw = mne.io.read_raw_fif(fname, preload=True)



# Always use an average EEG reference when doing microstate analysis

raw.set_eeg_reference('average')



# Highpass filter the data a little bit

raw.filter(0.2, None)



# Selecting the sensor types to use in the analysis. In this example, we

# use only EEG channels

raw.pick_types(meg=False, eeg=True)



# Segment the data into 6 microstates

maps, segmentation = mne_microstates.segment(raw.get_data(), n_states=6)



# Plot the topographic maps of the found microstates

mne_microstates.plot_maps(maps, raw.info)



# Plot the segmentation of the first 500 samples

mne_microstates.plot_segmentation(segmentation[:500], raw.get_data()[:, :500], raw.times[:500])

Author

Marijn van Vliet w.m.vanvliet@gmail.com

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mne_microstates-0.3.tar.gz (6.6 kB view details)

Uploaded Source

Built Distribution

mne_microstates-0.3-py3-none-any.whl (10.2 kB view details)

Uploaded Python 3

File details

Details for the file mne_microstates-0.3.tar.gz.

File metadata

  • Download URL: mne_microstates-0.3.tar.gz
  • Upload date:
  • Size: 6.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.2.0 keyring/23.4.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for mne_microstates-0.3.tar.gz
Algorithm Hash digest
SHA256 cafde4b3f8384a32ed8bc8721c0b51dcbb46326b54e9b631d6d379b02f4fdf9f
MD5 754b7047c9e10db9dd6a753f70fb366c
BLAKE2b-256 f6daa7c2f800ddd77f89e10b944eab7022599a426f9f2db585dff75b38fb1d41

See more details on using hashes here.

File details

Details for the file mne_microstates-0.3-py3-none-any.whl.

File metadata

  • Download URL: mne_microstates-0.3-py3-none-any.whl
  • Upload date:
  • Size: 10.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.2.0 keyring/23.4.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for mne_microstates-0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 6d31ba47106feb7a718671c344c4f82c78a01a77726db02bc3ffc7f6f24a2107
MD5 c7e75b4ee00bc1800f5ec075278b1c15
BLAKE2b-256 25b987c3afb96e957a14e68dc6fc10cce73c3a847ad64be497ff0b3afbcd672b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page