Skip to main content

For lazy python users (monogusa people in Japanse), especially in ML/DSP fields

Project description

Requirements

chardet
GitPython
h5py
joblib
matplotlib
natsort
numpy
pandas
pymatreader
PyYAML
scipy
seaborn
sklearn
statsmodels
torch
xmltodict

Installation

$ pip install mngs

or

$ pip install git+https://github.com/ywatanabe1989/mngs.git@develop

mngs.general.save

import mngs
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

## numpy
arr = np.arange(10)
mngs.general.save(arr, 'spath.npy')

## pandas
df = pd.DataFrame(arr)
mngs.general.save(df, 'spath.csv')

## matplotlib
fig, ax = plt.subplots()
ax.plot(arr)
mngs.general.save(fig, 'spath.png)

mngs.general.load

import mngs
arr = mngs.general.load('spath.npy')
arr = mngs.general.load('spath.mat')
df = mngs.general.load('spath.npy')
yaml_dict = mngs.general.load('spath.yaml')
hdf5_dict = mngs.general.load('spath.hdf5')

mngs.general.fix_seeds

import mngs
import os
import random
import numpy as np
import torch

mngs.general.fix_seeds(os=os, random=random, np=np, torch=torch, tf=None, seed=42)

mngs.general.tee

import sys
sys.stdout, sys.stderr = tee(sys)
print("abc")  # also wrriten in stdout
print(1 / 0)  # also wrriten in stderr

mngs.plt.configure_mpl

configure_mpl(
    plt,
    dpi=100,
    figsize=(16.2, 10),
    figscale=1.0,
    fontsize=16,
    labelsize="same",
    legendfontsize="xx-small",
    tick_size="auto",
    tick_width="auto",
    hide_spines=False,
)

mngs.plt.ax_*

  • mngs.plt.ax_extend
  • mngs.plt.ax_scientific_notation
  • mngs.plt.ax_set_position

mngs.ml.Reporter

Now, classification task is available.

reporter = mngs.ml.Reporter(sdir=log_dir)
for i_fold in range(N_FOLDS):
    ...
    print("\n--- Metrics ---\n")
    reporter.calc_metrics(
        T_tes,
        pred_class_tes,
        pred_proba_tes,
        labels=[class_0, class_1, class_2],
        i_fold=i_fold,
    )
    print("\n---------------\n")

reporter.summarize()
reporter.save()

The above lines makes reportes and figures.

$ tree $log_dir
├── aucs.csv
├── bACCs.csv
├── balanced_accs.csv
├── clf_reports.csv
├── conf_mat
│   ├── conf_mats.csv
│   ├── fold#0.png
│   ├── fold#1.png
│   ├── fold#2.png
│   └── overall_sum.png
├── mccs.csv
├── pre_rec_curves
│   ├── fold#0.png
│   ├── fold#1.png
│   └── fold#2.png
└── roc_curves
    ├── fold#0.png
    ├── fold#1.png
    └── fold#2.png

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mngs-0.2.5.tar.gz (81.3 kB view hashes)

Uploaded Source

Built Distribution

mngs-0.2.5-py3-none-any.whl (110.9 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page