Skip to main content

More Logs! Structured Logging and Exception Handling

Project description

More Logs - Structured Logging and Exception Handling

Branch Status
master Build Status
dev Build Status

This library provides two main features

  • Structured logging - output is all JSON (with options to serialize to text for humans)
  • Exception handling weaved in - Good logs must represent what happened, and that can not be done if the logging library is not intimately familiar with the (exceptional) code paths taken.

Motivation

Exception handling and logging are undeniably linked. There are many instances where exceptions are raised and must be logged, and others where the subsuming system can fully handle the exception, and no log should be emitted. Exception handling semantics are great because they decouple the cause from the solution, but this can be at odds with clean logging - which couples raising and catching to make appropriate decisions about what to emit to the log.

This logging module is additionally responsible for raising exceptions, collecting the trace and context, and then deducing if it must be logged, or if it can be ignored because something can handle it.

Basic Usage

Use Log.note() for all logging

    Log.note("Hello, World!")

There is no need to create logger objects. The Log module will keep track of what, where and who of every call.

Using named parameters

All logging calls accept a string template with named parameters. Keyword arguments can be added to the call to provide values. The template and arguments are not combined at call time, rather they are held in a JSON-izable data structure for structured logging. The template is only expanded if the log is serialized for humans.

    Log.note("Hello, {{name}}!", name="World!")

Do not use Python's string formatting features:

Using any of these will expand the string template at call time, which is a parsing nightmare for log analysis tools.

Parametric parameters

All the Log functions accept a default_params as a second parameter, like so:

    Log.note("Hello, {{name}}!", {"name": "World!"})

this is meant for the situation your code already has a bundled structure you wish to use as a source of parameters. If keyword parameters are used, they will override the default values. Be careful when sending whole data structures, they will be logged!

Formatting parameters

There are a variety of formatters, and they can be applied by using the pipe (|) symbol.

In this example we cast the name to uppercase

    Log.note("Hello, {{name|upper}}!", name="World!")

Some formatters accept arguments:

    Log.note("pi is {{pi|round(places=3)}}!", pi=3.14159265)

You can look at the strings module to see the formatters available.

Please, never use locals()

    def worker(value):
        name = "tout le monde!"
        password = "123"
        Log.note("Hello, {{name}}", locals())      # DO NOT DO THIS!

Despite the fact using locals() is a wonderful shortcut for logging it is dangerous because it also picks up sensitive local variables. Even if {{name}} is the only value in the template, the whole locals() dict will be sent to the structured loggers for recording.

Exception Handling

All logs are structured logs; the parameters will be included, unchanged, in the log structure. This library also expects all parameter values to be JSON- serializable so they can be stored/processed by downstream JSON tools.

    {//EXAMPLE STRUCTURED LOG
        "template": "Hello, {{name}}!",
        "param": {"name": "World!"},
        "timestamp": 1429721745,
        "thread": {
            "name": "Main thread"
        },
        "location": {
            "line": 3,
            "file": "hello.py",
            "method": "hello"
        },
        "machine": {
            "python": "CPython",
            "os": "Windows10",
            "name": "ekyle-win"
        }
    }

Instead of raise use Log.error()

    Log.error("This will throw an error")

The actual call will always raise an exception, and it manipulates the stack trace to ensure the caller is appropriately blamed. Feel free to use the raise keyword (as in raise Log.error("")), if that looks nicer to you.

Always chain your exceptions

The cause parameter accepts an Exception, or a list of exceptions. Chaining is generally good practice that helps you find the root cause of a failure.

    try:
        # Do something that might raise exception
    except Exception as e:
        Log.error("Describe what you were trying to do", cause=e)

Use named parameters in your error descriptions too

Error logging accepts keyword parameters just like Log.note() does

    def worker(value):
        try:
            Log.note("Start working with {{key1}}", key1=value1)
            # Do something that might raise exception
        except Exception as e:
            Log.error("Failure to work with {{key2}}", key2=value2, cause=e)

No need to formally type your exceptions

An exception can be uniquely identified by the first-parameter string template it is given; exceptions raised with the same template are the same type. You should have no need to create new exception sub-types.

Testing for exception "types"

This library advocates chaining exceptions early and often, and this hides important exception types in a long causal chain. mo-logs allows you to easily test if a type (or string, or template) can be found in the causal chain by using the in keyword:

    def worker(value):
        try:
            # Do something that might raise exception
        except Exception as e:
            if "Failure to work with {{key2}}" in e:
                # Deal with exception thrown in above code, no matter
                # how many other exception handlers were in the chain

If you can deal with an exception, then it will never be logged

When a caller catches an exception from a callee, it is the caller's responsibility to handle that exception, or re-raise it. There are many situations a caller can be expected to handle exceptions; and in those cases logging an error would be deceptive.

    def worker(value):
        try:
            Log.error("Failure to work with {{key3}}", key3=value3)
        except Exception as e:
            # Try something else

Use Log.warning() if your code can deal with an exception, but you still want to log it as an issue

    def worker(value):
        try:
            Log.note("Start working with {{key4}}", key4=value4)
            # Do something that might raise exception
        except Exception as e:
            Log.warning("Failure to work with {{key4}}", key4=value4, cause=e)

Don't loose your stack trace!

Be aware your except clause can also throw exceptions: In the event you catch a vanilla Python Exception, you run the risk of loosing its stack trace. To prevent this, wrap your exception in an Except object, which will capture your trace for later use. Exceptions thrown from this Log library need not be wrapped because they already captured their trace. If you wrap an Except object, you simply get back the object you passed.

    try:
        # DO SOME WORK        
    except Exception as e:
        e = Except.wrap(e)
        # DO SOME FANCY ERROR RECOVERY

Always catch all Exceptions

Catching all exceptions is preferred over the only-catch-what-you-can-handle strategy. First, exceptions are not lost because we are chaining. Second, we catch unexpected Exceptions early and we annotate them with a description of what the local code was intending to do. This annotation effectively groups the possible errors (known, or not) into a class, which can be used by callers to decide on appropriate mitigation.

To repeat: When using dependency injection, callers can not reasonably be expected to know about the types of failures that can happen deep down the call chain. This makes it vitally important that methods summarize all exceptions, both known and unknown, so their callers have the information to make better decisions on appropriate action.

For example: An abstract document container, implemented on top of a SQL database, should not emit SQLExceptions of any kind: A caller that uses a document container should not need to know how to handle SQLExceptions (or any other implementation-specific exceptions). Rather, in this example, the caller should be told it "can not add a document", or "can not remove a document". This allows the caller to make reasonable decisions when they do occur. The original cause (the SQLException) is in the causal chain.

Another example, involves nested exceptions: If you catch a particular type of exception, you may inadvertently catch the that same type of exception from deeper in the call chain. Narrow exception handling is an illusion. Broad exception handling will force you to consider a variety of failures early; force you to consider what it means when a block of code fails; and force you to describe it for others.

Don't make methods you do not need

There is an argument that suggests you should break your code into methods, rather than catching exceptions: The method name will describe action that failed, and the stack trace can be inspected to make mitigation decisions. But this is a poor solution:

  • More methods means more complexity; the programmer must find the method, remember the method, and wonder if it is used elsewhere.
  • Catching exceptions allows you to include important state information.
  • Catching exceptions makes it clear the error is important; someone might remove your method when refactoring
  • Compiler optimizations can interfere with the call stack
  • The name of the method might get very long to describe the problem

Log 'Levels'

The mo-logs module has no concept of logging levels it is expected that debug variables (variables prefixed with DEBUG_ are used to control the logging output.

    # simple.py
    DEBUG_SHOW_DETAIL = True

    def worker():
        if DEBUG_SHOW_DETAIL:
            Log.note("Starting")

        # DO WORK HERE

        if DEBUG_SHOW_DETAIL:
            Log.note("Done")

    def main():
        try:
            settings = startup.read_settings()
            Log.start(settings.debug)

            # DO WORK HERE

        except Exception as e:
            Log.error("Complain, or not", e)
        finally:
            Log.stop()

These debug variables can be set by configuration file:

    // settings.json
    {
        "debug":{
            "constants":{"simple.DEBUG_SHOW_DETAILS":false}
        }
    }

Configuration

The logs module will log to the console by default. Log.start(settings) will redirect the logging to other streams, as defined by the settings:

  • log - List of all log-streams and their parameters
  • trace - Show more details in every log line (default False)
  • cprofile - Used to enable the builtin python c-profiler (default False)
  • profile - Used to enable pyLibrary's simple profiling (default False) (eg with Profiler("some description"):)
  • constants - Map absolute path of module constants to the values that will be assigned. Used mostly to set debugging constants in modules.

Of course, logging should be the first thing to be setup (aside from digesting settings of course). For this reason, applications should have the following structure:

    def main():
        try:
            settings = startup.read_settings()
            Log.start(settings.debug)

            # DO WORK HERE

        except Exception as e:
            Log.error("Complain, or not", e)
        finally:
            Log.stop()
    "log": [
        {
            "class": "logging.handlers.RotatingFileHandler",
            "filename": "examples/logs/examples_etl.log",
            "maxBytes": 10000000,
            "backupCount": 100,
            "encoding": "utf8"
        },
        {
            "log_type": "email",
            "from_address": "klahnakoski@mozilla.com",
            "to_address": "klahnakoski@mozilla.com",
            "subject": "[ALERT][DEV] Problem in ETL Spot",
            "$ref": "file://~/private.json#email"
        },
        {
            "log_type": "console"
        }
    ]

Problems with Python Logging

Python's default logging module comes close to doing the right thing, but fails:

  • It has keyword parameters, but they are expanded at call time so the values are lost in a string.
  • It has extra parameters, but they are lost if not used by the matching Formatter.
  • It even has stack trace with exc_info parameter, but only if an exception is being handled.
  • Python 2.x has no builtin exception chaining, but Python 3 does

More Reading

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mo-logs-2.29.19025.tar.gz (30.3 kB view details)

Uploaded Source

File details

Details for the file mo-logs-2.29.19025.tar.gz.

File metadata

  • Download URL: mo-logs-2.29.19025.tar.gz
  • Upload date:
  • Size: 30.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/2.7.14

File hashes

Hashes for mo-logs-2.29.19025.tar.gz
Algorithm Hash digest
SHA256 eb87006487990257c385a38fc1958afef078b1a01cae085ffa4a2b640062100e
MD5 d9a0e58bf3cac48833487c9b6fd333b4
BLAKE2b-256 0e75d689ddf18595f5563669eeccbc8e78bd4a6c423c41ef5f179fb5f463ef67

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page