Skip to main content

Midas Open API for Python

Project description

banner

made-with-python

Midas API: Revolutionizing Engineering 🚀

Welcome to the future of engineering with Midas API! 🌟 This cutting-edge repository is designed to transcend traditional engineering methodologies. A goldmine of innovation, Midas API eagerly awaits your contributions. Let's push the boundaries of possibility together! 😊

Table of Contents

Introduction

Midas API is a state-of-the-art tool designed to revolutionize the field of engineering. By providing robust, scalable, and efficient solutions, Midas API empowers engineers to tackle complex challenges with ease. Whether you're a seasoned professional or a newcomer, Midas API is here to support your engineering journey.

Getting Started

Prerequisites

  1. Install VSCode: Download and install Visual Studio Code from the official Visual Studio Code website.
  2. Install Python: Download and install Python 3.12.1 from the official Python website. Ensure Python is added to your PATH during installation.
  3. Install Pipenv: Use pip to install Pipenv, a tool that helps manage dependencies.
    pip install pipenv
    
  4. Install Project Dependencies: Navigate to your project directory and install the necessary modules using Pipenv.
    • For running environment:
    pipenv install
    
    • For development environment:
    pipenv install --dev
    
  5. Prepare to Use Midas API: Visit the Midas API Documentation for more details.

Coding Conventions

Project Structure

  • project/: Develop each plugin within this folder.
  • base/: Contains shared utility functions and base modules like MidasAPI. Use this folder for any calculation base functions.
  • tests/: Contains test files for regression testing.
  • rod/: Extract JSON schema from this repository.
  • docs/: Sphinx document folder.

Style Guide

Adhere to the Google Python Style Guide for comprehensive coding conventions.

  • Using Flake8: Install flake8 to automatically check and enforce coding conventions during development.
    pip install flake8
    
    flake8 Visual Studio Code extension
  • Development Environment: Configure your development environment to use flake8. Ensure any issues flagged by flake8 are corrected promptly.

Documentation Guide

Proper documentation is key to maintainability. Ensure that all functions, especially those in the base module, are well-documented.

  • Using autoDocstring: Install autoDocstring to assist with writing docstrings. (ctrl + shift + 2) autoDocstring Visual Studio Code extension
  • Docstrings: Use Google-style docstrings. Install the necessary extensions to assist with writing docstrings.
    • Example: Data class with docstring:

      from dataclasses import dataclass, field as dataclass_field
      
      @dataclass
      class Person:
          """
          Person details.
          """
          name: str = dataclass_field(default="", metadata={"description": "The person's full name."})
          age: int = dataclass_field(default=0, metadata={"description": "The person's age."})
          email: str = dataclass_field(default='', metadata={"description": "The person's email address."})
      
    • Example: Pydantic model with docstring:

      from pydantic import BaseModel, Field
      from typing import List, Dict, Union
      
      class Contact(BaseModel):
          """
          Contact details.
          """
          phone: str = Field(default="", description="The contact's phone number.")
          address: str = Field(default='', description="The contact's address.")
      
      def my_function(person: Person, contacts: List[Contact], settings: Dict[str, Union[int, str]] = {}) -> bool:
          """
          Processes person and their contacts with given settings.
      
          Args:
              person: The person details.
              contacts: List of contact details.
              settings: Miscellaneous settings.
      
          Returns:
              bool: True if successful, False otherwise.
          """
          return True
      

Testing

Ensure the reliability of new code by writing comprehensive tests.

  • Regression Tests: For any additions to the base module, add corresponding regression tests using pytest.

  • Test Files: Save test files in the tests folder with the test_*.py naming convention.

    • Example Test:
      import json
      import pytest
      import moapy.plugins.baseplate_KDS41_30_2022.baseplate_KDS41_30_2022_calc
      
      def test_baseplate_KDS41_30_2022_calc():
          input = {  
              'B' : 240, 'H' : 240, 'Fc' : 24, 'Fy' : 400,  
              'Ec' : 25811.006260943130, 'Es' : 210000,  
              'bolt' : [  
                { 'X' : 90, 'Y' : 0, 'Area' : 314.15926535897933 },  
                { 'X' : -90, 'Y' : 0, 'Area' : 314.15926535897933 } ],  
              'P' : -3349.9999999999964, 'Mx' : 0, 'My' : 51009999.999999985 
          }
      
          JsonData = json.dumps(input)
          result = moapy.plugins.baseplate_KDS41_30_2022.baseplate_KDS41_30_2022_calc.calc_ground_pressure(JsonData)
          
          assert pytest.approx(result['bolt'][0]['Load']) == 0.0
          assert pytest.approx(result['bolt'][1]['Load']) == -269182.84245616524
      

Summary

  • Coding Conventions: Follow the Google Python Style Guide and use flake8 for enforcement.
  • Documentation: Write and maintain proper docstrings for all functions.
  • Testing: Develop test cases for new functions to enable regression testing.

By adhering to these rules and conventions, we can ensure our codebase remains high-quality, consistent, and reliable.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

moapy-1.2.5.tar.gz (42.3 MB view details)

Uploaded Source

Built Distribution

moapy-1.2.5-py3-none-any.whl (42.7 MB view details)

Uploaded Python 3

File details

Details for the file moapy-1.2.5.tar.gz.

File metadata

  • Download URL: moapy-1.2.5.tar.gz
  • Upload date:
  • Size: 42.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.1

File hashes

Hashes for moapy-1.2.5.tar.gz
Algorithm Hash digest
SHA256 ba05b73eaa7af9c63241c2f2cc0eb5b3058d5939122e16a2e827b42797206a7e
MD5 86180c0a2342d94bf9191d5531875318
BLAKE2b-256 cd63b98a3ff05ca8ec4ff6d691b53b9948e013af1ea5c6dce39c52acf6f9149e

See more details on using hashes here.

File details

Details for the file moapy-1.2.5-py3-none-any.whl.

File metadata

  • Download URL: moapy-1.2.5-py3-none-any.whl
  • Upload date:
  • Size: 42.7 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.1

File hashes

Hashes for moapy-1.2.5-py3-none-any.whl
Algorithm Hash digest
SHA256 03d92be876af81cdb584bb53bcd98219308d07bad56a4f6f841d10d506244c81
MD5 00dfe091fd189f11c3ea5986f4988f1c
BLAKE2b-256 4f0586d58c9c959a52325d82cd93a56f87f57c1c984f6ef794b46cb2d6de2dcd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page