Skip to main content

mobile-env: An Open Environment for Autonomous Coordination in Wireless Mobile Networks

Project description

CI PyPI Documentation Code Style: Black Open in Colab

mobile-env: An Open Environment for Autonomous Coordination in Mobile Networks

mobile-env is an open, minimalist environment for training and evaluating coordination algorithms in wireless mobile networks. The environment allows modeling users moving around an area and can connect to one or multiple base stations. Using the Gymnasium (previously Gym) interface, the environment can be used with any reinforcement learning framework (e.g., stable-baselines or Ray RLlib) or any custom (even non-RL) coordination approach. The environment is highly configurable and can be easily extended (e.g., regarding users, movement patterns, channel models, etc.).

mobile-env supports multi-agent and centralized reinforcement learning policies. It provides various choices for rewards and observations. mobile-env is also easily extendable, so that anyone may add another channel models (e.g. path loss), movement patterns, utility functions, etc.

As an example, mobile-env can be used to study multi-cell selection in coordinated multipoint. Here, it must be decided what connections should be established among user equipments (UEs) and base stations (BSs) in order to maximize Quality of Experience (QoE) globally. To maximize the QoE of single UEs, the UE intends to connect to as many BSs as possible, which yields higher (macro) data rates. However, BSs multiplex resources among connected UEs (e.g. schedule physical resource blocks) and, therefore, UEs compete for limited resources (conflicting goals). To maximize QoE globally, the policy must recognize that (1) the data rate of any connection is governed by the channel (e.g. SNR) between UE and BS and (2) QoE of single UEs not necessarily grows linearly with increasing data rate.


Base station icon by Clea Doltz from the Noun Project

Try mobile-env:

  • Part I: Customizing mobile-env and single-agent RL with stable-baselines3: Open in Colab
  • Part II: Multi-agent RL on mobile-env with Ray RLlib: Open in Colab

Documentation and API: ReadTheDocs

Citation

If you use mobile-env in your work, please cite our paper (author PDF):

@inproceedings{schneider2022mobileenv,
  author = {Schneider, Stefan and Werner, Stefan and Khalili, Ramin and Hecker, Artur and Karl, Holger},
  title = {mobile-env: An Open Platform for Reinforcement Learning in Wireless Mobile Networks},
  booktitle={Network Operations and Management Symposium (NOMS)},
  year = {2022},
  publisher = {IEEE/IFIP},
}

mobile-env is based on the underlying environment using in DeepCoMP, which is a combination of reinforcement learning approaches for dynamic multi-cell selection. mobile-env provides this underlying environment as open, stand-alone environment.

Installation

From PyPI (Recommended)

The simplest option is to install the latest release of mobile-env from PyPI using pip:

pip install mobile-env

This is recommended for most users. mobile-env is tested on Ubuntu, Windows, and MacOS.

From Source (Development)

Alternatively, for development, you can clone mobile-env from GitHub and install it from source. After cloning, install in "editable" mode (-e):

pip install -e .

This is equivalent to running pip install -r requirements.txt.

If you want to run tests or examples, also install the requirements in tests. For dependencies for building docs, install the requirements in docs.

Example Usage

import gymnasium
import mobile_env

env = gymnasium.make("mobile-medium-central-v0")
obs, info = env.reset()
done = False

while not done:
    action = ... # Your agent code here
    obs, reward, terminated, truncated, info = env.step(action)
    done = terminated or truncated
    env.render()

Customization

mobile-env supports custom channel models, movement patterns, arrival & departure models, resource multiplexing schemes and utility functions. For example, replacing the default Okumura–Hata channel model by a (simplified) path loss model can be as easy as this:

import gymnasium
import numpy as np
from mobile_env.core.base import MComCore
from mobile_env.core.channel import Channel


class PathLoss(Channel):
    def __init__(self, gamma, **kwargs):
        super().__init__(**kwargs)
        # path loss exponent
        self.gamma = gamma

    def power_loss(self, bs, ue):
        """Computes power loss between BS and UE."""
        dist = bs.point.distance(ue.point)
        loss = 10 * self.gamma * np.log10(4 * np.pi * dist * bs.frequency)
        return loss


# replace default channel model in configuration
config = MComCore.default_config()
config['channel'] = PathLoss

# pass init parameters to custom channel class!
config['channel_params'].update({'gamma': 2.0})

# create environment with custom channel model
env = gymnasium.make('mobile-small-central-v0', config=config)
# ...

Projects Using mobile-env

If you are using movile-env, please let us know and we are happy to link to your project from the readme. You can also open a pull request yourself.

Contributing

Development: @stefanbschneider and @stwerner97

We happy if you find mobile-env useful. If you have feedback or want to report bugs, feel free to open an issue. Also, we are happy to link to your projects if you use mobile-env.

We also welcome contributions: Whether you implement a new channel model, fix a bug, or just make a minor addition elsewhere, feel free to open a pull request!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mobile_env-2.0.3.tar.gz (26.1 kB view details)

Uploaded Source

Built Distribution

mobile_env-2.0.3-py3-none-any.whl (29.4 kB view details)

Uploaded Python 3

File details

Details for the file mobile_env-2.0.3.tar.gz.

File metadata

  • Download URL: mobile_env-2.0.3.tar.gz
  • Upload date:
  • Size: 26.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for mobile_env-2.0.3.tar.gz
Algorithm Hash digest
SHA256 afba9e5778e88974848589581c9fef17efec988d0d4d0251038f56ae26503456
MD5 9a01f5da89f9b1e247617c27e5a21a24
BLAKE2b-256 a9dc3760ff8b83301cb2d87293058be7efc8c5481a7ae2eacd11ec8f3d255be3

See more details on using hashes here.

Provenance

The following attestation bundles were made for mobile_env-2.0.3.tar.gz:

Publisher: python-publish.yml on stefanbschneider/mobile-env

Attestations:

File details

Details for the file mobile_env-2.0.3-py3-none-any.whl.

File metadata

  • Download URL: mobile_env-2.0.3-py3-none-any.whl
  • Upload date:
  • Size: 29.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for mobile_env-2.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 8de5cf359e61722b54d3dc3745561d7760bd1c399910fd5850a0322b6ddb3c27
MD5 326b344c4abade690f6ce58fd7e808d0
BLAKE2b-256 8db38069177eb051c27b5087174f5f5799b91ae43bd8ee9bcf5de871321e452a

See more details on using hashes here.

Provenance

The following attestation bundles were made for mobile_env-2.0.3-py3-none-any.whl:

Publisher: python-publish.yml on stefanbschneider/mobile-env

Attestations:

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page