Skip to main content

A framework for creating stand-ins for CLI tools that pretend to be the real thing for when "the real thing" isn't suitable, such as in automated tests.

Project description

Mock CLI Framework

Description

This is a framework that can be called from a short Python console script to simulate the responses of an actual command-line tool.

mock-cli-framework provides API for two purposes:

  • Playing back canned responses based on a provided list of command-line arguments in order to simulate an actual command-line tool's behavior
  • Generating a directory of canned responses from invocations of the actual tool

A command "invocation" is a unique list of arguments to that command. A "response" is the output the command wrote to stdout, stderr, as well as the numerical exit status of the command.

Why?

This is useful in cases where the real command-line tool can't be used. For example you might have a script or other program that shells out to a command. You want to verify that your code processes that command's output and handles its errors properly, such as in automated tests. But the tests can't provide things the real command requires like human interaction or online account access that would be needed by the real tool. You can use mock-cli-work to "record" the responses of the real command-line tool as well as use mock-cli-framework to create a fake version of the command. You can then have your code shell out to the "fake" command (using symlinks, PATH variable, etc.) to play back those reponses in your testing environment.

Usage

Response Directory

To use mock-cli-framework to simulate a real command, it requires a few things:

  • A JSON-encoded "response directory" listing all the command-line argument variations and a response dictionary for each
  • An on-disk repository of "responses" that can be read and then written to stdout & stderr

The response directory is designed to be easily hand generated (or easily scripted), but there is also API to automate creation of it.

Before discussing the Response Generator API, let's look at the response directory's anatomy.

As an example, the JSON response directory for the md5sum command might look like:

{
  "meta": {
    "response_dir": "./responses"
  },
  "commands": {
    "--binary|big-file.bin": {
      "exit_status": 0,
      "stdout": "output",
      "stderr": "error_output",
      "name": "binary-big-file-bin"
    },
    "--text|missing-file.txt": {
      "exit_status": 1,
      "stdout": "output",
      "stderr": "error_output",
      "name": "text-missing-file-txt"
    },
    "--check|file-list.txt": {
      "exit_status": 0,
      "stdout": "output",
      "stderr": "error_output",
      "name": "check-file-list-txt"
    }
  }
}

In the example above, each "command" dictionary is keyed by an encoded argument string, and contains:

  • Numerical exit status
  • Filename of stdout written to disk
  • Filename of stderr written to disk
  • An arbitary, unique name for this invocation which serves as the parent directory for the output files.

Then the "responses" directory looks like:

responses
├── binary-big-file-bin
│   ├── error_output
│   └── output
├── check-file-list-txt
│   ├── error_output
│   └── output
└── text-missing-file-txt
    ├── error_output
    └── output

The names of the response output files and their containing directories don't especially matter, but it is recommended to use names that relate to what the command is intended to simulate.

Command Mock-up

Given the above response directory, you can programmatically use mock_cli API to make a short script that pretends to be the real command:

#!/usr/bin/env python3
# mock-md5sum.py

from mock_cli import MockCommand

def build_arg_parser():
  parser = argparse.ArgumentParser()
  # add arguments you want your command to be aware of
  return parser

def main():
    # We parse args in order to fail on args we don't understand
    # even though we don't actually use them
    # Ideally we should fail in the same way the real command would fail
    parser = build_arg_parser()
    parser.parse_args()
    responsedir_json_file = "./response-directory.json"
    cmd = MockCommand(responsedir_json_file)
    args = sys.argv[1:]
    exit_status = cmd.respond(args)
    return exit_status


if __name__ == "__main__":
    exit(main())

Now you can run your mock-md5sum.py, and it should play back responses from disk without having to actually md5 anything, or requiring the original input files:

$ mock-md5sum.py --binary big-file.bin
f4c014ae60f420d90c2b52f4969f8d99 *big-file.bin

If your code shells out to md5sum to hash really large files that you don't want to have in your testing harness, you can substitute mock-md5sum.py which will behave the same way as the real thing (or similarly enough). Presumably you can trust that md5sum hashes big-file.bin properly, so there's no need to replicate that part.

Response Generation API

To generate responses, there are two classes to know about;

  • CommandInvocation
  • ResponseDirectory

The ResponseDirectory class takes one required arguments and two optional ones:

  • responsedir_json_file is the path and filename of the response JSON dictionary that either exists or is to be created.
  • create Is an optional boolean flag to create the JSON dictionary if it doesn't already exist, defaulting to False
  • response_dir Is an optional path to a directory on disk that will contain recorded response output files.
    • It is required if create is true, so that it can be stored in the response dictionary for later use

ResponseDirectory provides a method to record a command invocation: add_command_invocation(). It takes two arguments:

  • cmd is a CommandInvocation object (discussed next)
  • save is an optional boolean flag to write the response dictionary to disk for later use, defaulting to False.
    • If the response directory is not saved to disk it will be held in memory and discarded when not in use.
    • If the response directory is to be used later or by a different program, pass save=True

The CommandInvocation class serves to bundle up a set of command-line arguments as well as command response context, including normal and error output and exit status. It takes several required arguments:

  • cmd_args is a list of strings represengting command-line arguments
  • output is a bytes object read from the command's standard output.
  • error_output is a bytes object read from the command's standard error.
  • returncode is the command's numerical exit status when executed with the provided command-line arguments
  • invocation_name is a unique, arbitrary name given to this particular invocation
    • It is recommended that the name be related to the command's arguments and intended action
    • The name should be filesystem-safe as it will be used as the directory name on disk to hold the output files
  • changes_state a boolean flag indicating if this command should trigger a state iteration
  • input is an optional bytes-like object that will be hashed if provided.
    • The command invocation will be added under "commands_with_input" using its hash as a key
    • Since more than one command may work with the same input, the invocations will be further keyed by their command-line arguments

Here's an example:

import subprocess
from mock_cli import ResponseDirectory, CommandInvocation


def main():
    directory = ResponseDirectory("./resopnse-directory.json", create=True, response_dir="./responses")
    argv = ["md5sum", "--binary", "big-file.bin"]
    p = subprocess.run(argv, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
    stdout = p.stdout
    stderr = p.stderr
    returncode = p.returncode

    # something to hint at what this command was doing
    invocation_name = "md5sum-[binary]-[big-file-bin]"

    # omit argv[0] program name. Only args to program are necessary
    # e.g., ["--binary", "big-file.bin"]
    cmd_args = argv[1:]

    invocation = CommandInvocation(cmd_args, stdout, stderr, returncode, invocation_name)


    # When adding a command invocation, the following happens:
    # - The command context (args, output, & exit status) is added to the dictionary of responses
    # - The invocation name is used to create a subdirectory under the top-level responses directory
    # - The normal and error output bytes are written to files inside the invocation subdirectory
    # - The response dictionary is optionally written to disk as JSON
    directory.add_command_invocation(invocation, save=True)
)

Limitations

There are a number of limitations to be aware of that prevent mock-cli-framework from fully simulating some commands:

  • Environment variables aren't processed, so behavior that is affected by them isn't simulated
  • Normal and error output can't be interleaved on the console
    • Standard output, if any, is written first
    • Standard error, if any, is written next
  • Timing/performance can't be simulated, and will usually be virtually instaneous
    • A command's typical run-time for a given input/workload can't be simulated
    • No assumptions can be made about one workload being faster/slower than another
  • Commands that run interactively can't be simulated
  • No side effects such as data written to disk can be simulated
  • If the output contains any time-sensitive details such as time-stamped logs, those details will reflect whatever was recorded and may not be current

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mock_cli_framework-0.8.0.tar.gz (16.5 kB view details)

Uploaded Source

Built Distribution

mock_cli_framework-0.8.0-py3-none-any.whl (15.7 kB view details)

Uploaded Python 3

File details

Details for the file mock_cli_framework-0.8.0.tar.gz.

File metadata

  • Download URL: mock_cli_framework-0.8.0.tar.gz
  • Upload date:
  • Size: 16.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for mock_cli_framework-0.8.0.tar.gz
Algorithm Hash digest
SHA256 3e7a9d6efa102fca256a485ef960bc552adf07aa9935079b5dceabd085e70941
MD5 dc21f515f95f7b0736863df3ffd3d23c
BLAKE2b-256 824ce0df3eb01106c228eafe920662d4e727f45fe53722e417ad4d439b44324b

See more details on using hashes here.

File details

Details for the file mock_cli_framework-0.8.0-py3-none-any.whl.

File metadata

File hashes

Hashes for mock_cli_framework-0.8.0-py3-none-any.whl
Algorithm Hash digest
SHA256 8c9ba4c7fb931baef8ed36086e298f952226541b437c37bdf5bc677cc8b7aa6c
MD5 712285f09b38781d76499df221eda6a4
BLAKE2b-256 2e133048d1f042b6951b0437fe60ac63ec45a4ef712f623c6f47b97578d1762a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page