Skip to main content

A mock library for confluent kafka

Project description

Alt text

Mockafka-py is a Python library designed for in-memory mocking of Kafka.

PyPI - Downloads GitHub Workflow Status (with event) GitHub Codecov GitHub release (with filter) GitHub repo size

Mockafka: Fake Version of confluent-kafka-python

Features

  • Compatible with confluent-kafka
  • Supports Produce, Consume, and AdminClient operations with ease.

TODO

Getting Start

Installing via pip

pip install mockafka-py

Usage

Multi-Decorator Examples

In the following examples, we showcase the usage of multiple decorators to simulate different scenarios in a Mockafka environment. These scenarios include producing, consuming, and setting up Kafka topics using the provided decorators.

Example 1: Using @produce and @consume Decorators

Test Case: test_produce_decorator

from mockafka import produce, consume

@produce(topic='test', key='test_key', value='test_value', partition=4)
@consume(topics=['test'])
def test_produce_and_consume_decorator(message):
    """
    This test showcases the usage of both @produce and @consume decorators in a single test case.
    It produces a message to the 'test' topic and then consumes it to perform further logic.
    # Notice you may got message None
    """
    # Your test logic for processing the consumed message here
    
    if not message:
        return 
    
    pass

Example 2: Using Multiple @produce Decorators

Test Case: test_produce_twice

from mockafka import produce

@produce(topic='test', key='test_key', value='test_value', partition=4)
@produce(topic='test', key='test_key1', value='test_value1', partition=0)
def test_produce_twice():
    # Your test logic here
    pass

Example 3: Using @bulk_produce and @consume Decorators

Test Case: test_bulk_produce_decorator

from mockafka import bulk_produce, consume

@bulk_produce(list_of_messages=sample_for_bulk_produce)
@consume(topics=['test'])
def test_bulk_produce_and_consume_decorator(message):
    """
    This test showcases the usage of both @bulk_produce and @consume decorators in a single test case.
    It bulk produces messages to the 'test' topic and then consumes them to perform further logic.
    """
    # Your test logic for processing the consumed message here
    pass

Example 4: Using @setup_kafka and @produce Decorators

Test Case: test_produce_with_kafka_setup_decorator

from mockafka import setup_kafka, produce

@setup_kafka(topics=[{"topic": "test_topic", "partition": 16}])
@produce(topic='test_topic', partition=5, key='test_', value='test_value1')
def test_produce_with_kafka_setup_decorator():
    # Your test logic here
    pass

Example 5: Using @setup_kafka, Multiple @produce, and @consume Decorators

Test Case: test_consumer_decorator

from mockafka import setup_kafka, produce, consume

@setup_kafka(topics=[{"topic": "test_topic", "partition": 16}])
@produce(topic='test_topic', partition=5, key='test_', value='test_value1')
@produce(topic='test_topic', partition=5, key='test_', value='test_value1')
@consume(topics=['test_topic'])
def test_consumer_decorator(message: Message = None):
    if message is None:
        return
    # Your test logic for processing the consumed message here
    pass

Using classes like confluent-kafka

from mockafka import FakeProducer, FakeConsumer, FakeAdminClientImpl
from mockafka.admin_client import NewTopic
from random import randint

# Create topic
admin = FakeAdminClientImpl()
admin.create_topics([
    NewTopic(topic='test', num_partitions=5)
])

# Produce messages
producer = FakeProducer()
for i in range(0, 10):
    producer.produce(
        topic='test',
        key=f'test_key{i}',
        value=f'test_value{i}',
        partition=randint(0, 4)
    )

# Subscribe consumer
consumer = FakeConsumer()
consumer.subscribe(topics=['test'])

# Consume messages
while True:
    message = consumer.poll()
    print(message)
    consumer.commit()

    if message is None:
        break

Output:

"""
<mockafka.message.Message object at 0x7fe84b4c3310>
<mockafka.message.Message object at 0x7fe84b4c3370>
<mockafka.message.Message object at 0x7fe84b4c33a0>
<mockafka.message.Message object at 0x7fe84b4c33d0>
<mockafka.message.Message object at 0x7fe84b4c3430>
<mockafka.message.Message object at 0x7fe84b4c32e0>
<mockafka.message.Message object at 0x7fe84b4c31f0>
<mockafka.message.Message object at 0x7fe84b4c32b0>
<mockafka.message.Message object at 0x7fe84b4c3400>
<mockafka.message.Message object at 0x7fe84b4c3340>
None
"""

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mockafka_py-0.1.44.tar.gz (11.5 kB view details)

Uploaded Source

Built Distribution

mockafka_py-0.1.44-py3-none-any.whl (14.9 kB view details)

Uploaded Python 3

File details

Details for the file mockafka_py-0.1.44.tar.gz.

File metadata

  • Download URL: mockafka_py-0.1.44.tar.gz
  • Upload date:
  • Size: 11.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for mockafka_py-0.1.44.tar.gz
Algorithm Hash digest
SHA256 db136b2be6d84db1627f5fbbf8bde2ccdc657fbfe1e15ab145dad62c0299fa32
MD5 6b4e6b1b620b0e8453eb086cb0b094ea
BLAKE2b-256 9e0fd211c78e8323f168bc8a243230228f0b11a438874c3cab2cd4eecc756262

See more details on using hashes here.

File details

Details for the file mockafka_py-0.1.44-py3-none-any.whl.

File metadata

  • Download URL: mockafka_py-0.1.44-py3-none-any.whl
  • Upload date:
  • Size: 14.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for mockafka_py-0.1.44-py3-none-any.whl
Algorithm Hash digest
SHA256 240213ed06dc031ede10cace4f2ecfc2945580dbcaebd443ba57f36123581eaa
MD5 8c92a16a5c939450f9790b6be9212c07
BLAKE2b-256 fc9338fc12c59993bf43b113c390599df2629ea103f7698cdc227c88e51b4c2e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page