Skip to main content

A mock library for confluent kafka

Project description

Alt text

Mockafka-py is a Python library designed for in-memory mocking of Kafka.

PyPI - Downloads GitHub Workflow Status (with event) GitHub Codecov GitHub release (with filter) GitHub repo size

Mockafka: Fake Version for confluent-kafka-python & aiokafka

Features

  • Compatible with confluent-kafka
  • Compatible with aiokafka
  • Supports Produce, Consume, and AdminClient operations with ease.

TODO

Getting Start

Installing via pip

pip install mockafka-py

Usage

Multi-Decorator Examples for confluent-kafka-python

In the following examples, we showcase the usage of multiple decorators to simulate different scenarios in a Mockafka environment. These scenarios include producing, consuming, and setting up Kafka topics using the provided decorators.

Example 1: Using @produce and @consume Decorators

Test Case: test_produce_decorator

from mockafka import produce, consume

@produce(topic='test', key='test_key', value='test_value', partition=4)
@consume(topics=['test'])
def test_produce_and_consume_decorator(message):
    """
    This test showcases the usage of both @produce and @consume decorators in a single test case.
    It produces a message to the 'test' topic and then consumes it to perform further logic.
    # Notice you may get message None
    """
    # Your test logic for processing the consumed message here
    
    if not message:
        return 
    
    pass

Example 2: Using Multiple @produce Decorators

Test Case: test_produce_twice

from mockafka import produce

@produce(topic='test', key='test_key', value='test_value', partition=4)
@produce(topic='test', key='test_key1', value='test_value1', partition=0)
def test_produce_twice():
    # Your test logic here
    pass

Example 3: Using @bulk_produce and @consume Decorators

Test Case: test_bulk_produce_decorator

from mockafka import bulk_produce, consume

@bulk_produce(list_of_messages=sample_for_bulk_produce)
@consume(topics=['test'])
def test_bulk_produce_and_consume_decorator(message):
    """
    This test showcases the usage of both @bulk_produce and @consume decorators in a single test case.
    It does bulk produces messages to the 'test' topic and then consumes them to perform further logic.
    """
    # Your test logic for processing the consumed message here
    pass

Example 4: Using @setup_kafka and @produce Decorators

Test Case: test_produce_with_kafka_setup_decorator

from mockafka import setup_kafka, produce

@setup_kafka(topics=[{"topic": "test_topic", "partition": 16}])
@produce(topic='test_topic', partition=5, key='test_', value='test_value1')
def test_produce_with_kafka_setup_decorator():
    # Your test logic here
    pass

Example 5: Using @setup_kafka, Multiple @produce, and @consume Decorators

Test Case: test_consumer_decorator

from mockafka import setup_kafka, produce, consume

@setup_kafka(topics=[{"topic": "test_topic", "partition": 16}])
@produce(topic='test_topic', partition=5, key='test_', value='test_value1')
@produce(topic='test_topic', partition=5, key='test_', value='test_value1')
@consume(topics=['test_topic'])
def test_consumer_decorator(message: Message = None):
    if message is None:
        return
    # Your test logic for processing the consumed message here
    pass

Using classes like confluent-kafka

from mockafka import FakeProducer, FakeConsumer, FakeAdminClientImpl
from mockafka.admin_client import NewTopic
from random import randint

# Create topic
admin = FakeAdminClientImpl()
admin.create_topics([
    NewTopic(topic='test', num_partitions=5)
])

# Produce messages
producer = FakeProducer()
for i in range(0, 10):
    producer.produce(
        topic='test',
        key=f'test_key{i}',
        value=f'test_value{i}',
        partition=randint(0, 4)
    )

# Subscribe consumer
consumer = FakeConsumer()
consumer.subscribe(topics=['test'])

# Consume messages
while True:
    message = consumer.poll()
    print(message)
    consumer.commit()

    if message is None:
        break

Output:

"""
<mockafka.message.Message object at 0x7fe84b4c3310>
<mockafka.message.Message object at 0x7fe84b4c3370>
<mockafka.message.Message object at 0x7fe84b4c33a0>
<mockafka.message.Message object at 0x7fe84b4c33d0>
<mockafka.message.Message object at 0x7fe84b4c3430>
<mockafka.message.Message object at 0x7fe84b4c32e0>
<mockafka.message.Message object at 0x7fe84b4c31f0>
<mockafka.message.Message object at 0x7fe84b4c32b0>
<mockafka.message.Message object at 0x7fe84b4c3400>
<mockafka.message.Message object at 0x7fe84b4c3340>
None
"""

Multi-Decorator Examples for aiokafka

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mockafka_py-0.1.48.tar.gz (13.9 kB view details)

Uploaded Source

Built Distribution

mockafka_py-0.1.48-py3-none-any.whl (20.7 kB view details)

Uploaded Python 3

File details

Details for the file mockafka_py-0.1.48.tar.gz.

File metadata

  • Download URL: mockafka_py-0.1.48.tar.gz
  • Upload date:
  • Size: 13.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for mockafka_py-0.1.48.tar.gz
Algorithm Hash digest
SHA256 1b8b3374740131f3a2b1921c9d1460da025e8ca5d5617e617aa0d667a13451ed
MD5 08b5471f6cb083248c5a31971f375940
BLAKE2b-256 10c30b439a06f04751d06ddccbd6a0baed385b26ba0a3ddfbc189d166280c91f

See more details on using hashes here.

File details

Details for the file mockafka_py-0.1.48-py3-none-any.whl.

File metadata

  • Download URL: mockafka_py-0.1.48-py3-none-any.whl
  • Upload date:
  • Size: 20.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for mockafka_py-0.1.48-py3-none-any.whl
Algorithm Hash digest
SHA256 e1b3dcf6f11d795c64d52e96202b575a1c80335aa54cb655a0d8f228f3bd152f
MD5 06f894c25748ab74d2a9fc50604304c7
BLAKE2b-256 f16d6e8e5030effef4ef6e095021d2e8ec6b54f316757f8896b644a346ac034a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page