Skip to main content

A mock library for confluent kafka

Project description

Alt text

Mockafka-py is a Python library designed for in-memory mocking of Kafka.

PyPI - Downloads GitHub Workflow Status (with event) GitHub Codecov GitHub release (with filter) GitHub repo size

Mockafka: Fake Version for confluent-kafka-python & aiokafka

Features

  • Compatible with confluent-kafka
  • Compatible with aiokafka
  • Supports Produce, Consume, and AdminClient operations with ease.

TODO

Getting Start

Installing via pip

pip install mockafka-py

Usage

Multi-Decorator Examples for confluent-kafka-python

In the following examples, we showcase the usage of multiple decorators to simulate different scenarios in a Mockafka environment. These scenarios include producing, consuming, and setting up Kafka topics using the provided decorators.

Example 1: Using @produce and @consume Decorators

Test Case: test_produce_decorator

from mockafka import produce, consume

@produce(topic='test', key='test_key', value='test_value', partition=4)
@consume(topics=['test'])
def test_produce_and_consume_decorator(message):
    """
    This test showcases the usage of both @produce and @consume decorators in a single test case.
    It produces a message to the 'test' topic and then consumes it to perform further logic.
    # Notice you may get message None
    """
    # Your test logic for processing the consumed message here
    
    if not message:
        return 
    
    pass

Example 2: Using Multiple @produce Decorators

Test Case: test_produce_twice

from mockafka import produce

@produce(topic='test', key='test_key', value='test_value', partition=4)
@produce(topic='test', key='test_key1', value='test_value1', partition=0)
def test_produce_twice():
    # Your test logic here
    pass

Example 3: Using @bulk_produce and @consume Decorators

Test Case: test_bulk_produce_decorator

from mockafka import bulk_produce, consume

@bulk_produce(list_of_messages=sample_for_bulk_produce)
@consume(topics=['test'])
def test_bulk_produce_and_consume_decorator(message):
    """
    This test showcases the usage of both @bulk_produce and @consume decorators in a single test case.
    It does bulk produces messages to the 'test' topic and then consumes them to perform further logic.
    """
    # Your test logic for processing the consumed message here
    pass

Example 4: Using @setup_kafka and @produce Decorators

Test Case: test_produce_with_kafka_setup_decorator

from mockafka import setup_kafka, produce

@setup_kafka(topics=[{"topic": "test_topic", "partition": 16}])
@produce(topic='test_topic', partition=5, key='test_', value='test_value1')
def test_produce_with_kafka_setup_decorator():
    # Your test logic here
    pass

Example 5: Using @setup_kafka, Multiple @produce, and @consume Decorators

Test Case: test_consumer_decorator

from mockafka import setup_kafka, produce, consume

@setup_kafka(topics=[{"topic": "test_topic", "partition": 16}])
@produce(topic='test_topic', partition=5, key='test_', value='test_value1')
@produce(topic='test_topic', partition=5, key='test_', value='test_value1')
@consume(topics=['test_topic'])
def test_consumer_decorator(message: Message = None):
    if message is None:
        return
    # Your test logic for processing the consumed message here
    pass

Using classes like confluent-kafka

from mockafka import FakeProducer, FakeConsumer, FakeAdminClientImpl
from mockafka.admin_client import NewTopic
from random import randint

# Create topic
admin = FakeAdminClientImpl()
admin.create_topics([
    NewTopic(topic='test', num_partitions=5)
])

# Produce messages
producer = FakeProducer()
for i in range(0, 10):
    producer.produce(
        topic='test',
        key=f'test_key{i}',
        value=f'test_value{i}',
        partition=randint(0, 4)
    )

# Subscribe consumer
consumer = FakeConsumer()
consumer.subscribe(topics=['test'])

# Consume messages
while True:
    message = consumer.poll()
    print(message)
    consumer.commit()

    if message is None:
        break

Output:

"""
<mockafka.message.Message object at 0x7fe84b4c3310>
<mockafka.message.Message object at 0x7fe84b4c3370>
<mockafka.message.Message object at 0x7fe84b4c33a0>
<mockafka.message.Message object at 0x7fe84b4c33d0>
<mockafka.message.Message object at 0x7fe84b4c3430>
<mockafka.message.Message object at 0x7fe84b4c32e0>
<mockafka.message.Message object at 0x7fe84b4c31f0>
<mockafka.message.Message object at 0x7fe84b4c32b0>
<mockafka.message.Message object at 0x7fe84b4c3400>
<mockafka.message.Message object at 0x7fe84b4c3340>
None
"""

Multi-Decorator Examples for aiokafka

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mockafka_py-0.1.49.tar.gz (13.9 kB view details)

Uploaded Source

Built Distribution

mockafka_py-0.1.49-py3-none-any.whl (20.7 kB view details)

Uploaded Python 3

File details

Details for the file mockafka_py-0.1.49.tar.gz.

File metadata

  • Download URL: mockafka_py-0.1.49.tar.gz
  • Upload date:
  • Size: 13.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for mockafka_py-0.1.49.tar.gz
Algorithm Hash digest
SHA256 715e9bd1ca8ec74de8adf5cb150497a85a383039abeff4517e2a1c5933eef22d
MD5 de4bd0f9d27ef91be48d4bd29765b94f
BLAKE2b-256 529c0dbedee8a956eefce90fa0ef8a5a06bfead5f880da68272909fea9da7068

See more details on using hashes here.

File details

Details for the file mockafka_py-0.1.49-py3-none-any.whl.

File metadata

  • Download URL: mockafka_py-0.1.49-py3-none-any.whl
  • Upload date:
  • Size: 20.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for mockafka_py-0.1.49-py3-none-any.whl
Algorithm Hash digest
SHA256 2778d11e95e6d2772c7570adceb1b0b096f2e96172f763e4d7ab87533c6a9774
MD5 521f55c31d733bf0b5a20dd3a9e49907
BLAKE2b-256 f6b7d84a1c8865aef16e3ada942fb5d67a6d297075999cbd5e333fcad870fb41

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page