Skip to main content

A mock library for confluent kafka

Project description

Alt text

Mockafka-py is a Python library designed for in-memory mocking of Kafka.

PyPI - Downloads GitHub Workflow Status (with event) GitHub Codecov GitHub release (with filter) GitHub repo size

Mockafka: Fake Version for confluent-kafka-python & aiokafka

Features

  • Compatible with confluent-kafka
  • Compatible with aiokafka
  • Supports Produce, Consume, and AdminClient operations with ease.

TODO

Getting Start

Installing via pip

pip install mockafka-py

Usage

Multi-Decorator Examples for confluent-kafka-python

In the following examples, we showcase the usage of multiple decorators to simulate different scenarios in a Mockafka environment. These scenarios include producing, consuming, and setting up Kafka topics using the provided decorators.

Example 1: Using @produce and @consume Decorators

Test Case: test_produce_decorator

from mockafka import produce, consume


@produce(topic='test', key='test_key', value='test_value', partition=4)
@consume(topics=['test'])
def test_produce_and_consume_decorator(message):
    """
    This test showcases the usage of both @produce and @consume decorators in a single test case.
    It produces a message to the 'test' topic and then consumes it to perform further logic.
    # Notice you may get message None
    """
    # Your test logic for processing the consumed message here

    if not message:
        return

    pass

Example 2: Using Multiple @produce Decorators

Test Case: test_produce_twice

from mockafka import produce


@produce(topic='test', key='test_key', value='test_value', partition=4)
@produce(topic='test', key='test_key1', value='test_value1', partition=0)
def test_produce_twice():
    # Your test logic here
    pass

Example 3: Using @bulk_produce and @consume Decorators

Test Case: test_bulk_produce_decorator

from mockafka import bulk_produce, consume


@bulk_produce(list_of_messages=sample_for_bulk_produce)
@consume(topics=['test'])
def test_bulk_produce_and_consume_decorator(message):
    """
    This test showcases the usage of both @bulk_produce and @consume decorators in a single test case.
    It does bulk produces messages to the 'test' topic and then consumes them to perform further logic.
    """
    # Your test logic for processing the consumed message here
    pass

Example 4: Using @setup_kafka and @produce Decorators

Test Case: test_produce_with_kafka_setup_decorator

from mockafka import setup_kafka, produce


@setup_kafka(topics=[{"topic": "test_topic", "partition": 16}])
@produce(topic='test_topic', partition=5, key='test_', value='test_value1')
def test_produce_with_kafka_setup_decorator():
    # Your test logic here
    pass

Example 5: Using @setup_kafka, Multiple @produce, and @consume Decorators

Test Case: test_consumer_decorator

from mockafka import setup_kafka, produce, consume


@setup_kafka(topics=[{"topic": "test_topic", "partition": 16}])
@produce(topic='test_topic', partition=5, key='test_', value='test_value1')
@produce(topic='test_topic', partition=5, key='test_', value='test_value1')
@consume(topics=['test_topic'])
def test_consumer_decorator(message: Message = None):
    if message is None:
        return
    # Your test logic for processing the consumed message here
    pass

Using classes like confluent-kafka

from mockafka import FakeProducer, FakeConsumer, FakeAdminClientImpl
from mockafka.admin_client import NewTopic
from random import randint

# Create topic
admin = FakeAdminClientImpl()
admin.create_topics([
    NewTopic(topic='test', num_partitions=5)
])

# Produce messages
producer = FakeProducer()
for i in range(0, 10):
    producer.produce(
        topic='test',
        key=f'test_key{i}',
        value=f'test_value{i}',
        partition=randint(0, 4)
    )

# Subscribe consumer
consumer = FakeConsumer()
consumer.subscribe(topics=['test'])

# Consume messages
while True:
    message = consumer.poll()
    print(message)
    consumer.commit()

    if message is None:
        break

Output:

"""
<mockafka.message.Message object at 0x7fe84b4c3310>
<mockafka.message.Message object at 0x7fe84b4c3370>
<mockafka.message.Message object at 0x7fe84b4c33a0>
<mockafka.message.Message object at 0x7fe84b4c33d0>
<mockafka.message.Message object at 0x7fe84b4c3430>
<mockafka.message.Message object at 0x7fe84b4c32e0>
<mockafka.message.Message object at 0x7fe84b4c31f0>
<mockafka.message.Message object at 0x7fe84b4c32b0>
<mockafka.message.Message object at 0x7fe84b4c3400>
<mockafka.message.Message object at 0x7fe84b4c3340>
None
"""

Multi-Decorator Examples for aiokafka

Example 1: Using @aproduce and @aconsume and @asetup_kafka Decorators

Test Case: test_produce_and_consume_with_decorator

import pytest
from mockafka import aproduce, aconsume, asetup_kafka


@pytest.mark.asyncio
@asetup_kafka(topics=[{'topic': 'test_topic', 'partition': 16}], clean=True)
@aproduce(topic='test_topic', value='test_value', key='test_key', partition=0)
@aconsume(topics=['test_topic'])
async def test_produce_and_consume_with_decorator(message=None):
    if not message:
        return

    assert message.key() == 'test_key'
    assert message.value() == 'test_value'

Example 2: Using @aproduce and @asetup_kafka Decorators

Test Case: test_produce_with_decorator

import pytest
from mockafka import aproduce, asetup_kafka
from mockafka.aiokafka import FakeAIOKafkaConsumer

@pytest.mark.asyncio
@asetup_kafka(topics=[{'topic': 'test_topic', 'partition': 16}], clean=True)
@aproduce(topic='test_topic', value='test_value', key='test_key', partition=0)
async def test_produce_with_decorator():
    consumer = FakeAIOKafkaConsumer()
    await consumer.start()
    consumer.subscribe(['test_topic'])
    message = await consumer.getone()

    assert message.key() == 'test_key'
    assert message.value() == 'test_value'

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mockafka_py-0.1.52.tar.gz (14.3 kB view details)

Uploaded Source

Built Distribution

mockafka_py-0.1.52-py3-none-any.whl (21.0 kB view details)

Uploaded Python 3

File details

Details for the file mockafka_py-0.1.52.tar.gz.

File metadata

  • Download URL: mockafka_py-0.1.52.tar.gz
  • Upload date:
  • Size: 14.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for mockafka_py-0.1.52.tar.gz
Algorithm Hash digest
SHA256 f9c93fd666bd04ab79d591e0ca6280083d5f1413948b05de63f6cfbfa6029596
MD5 40eab3a4e0c619c66df36bbecf5e87d8
BLAKE2b-256 d5f91654d773a853253a5f95bfa4767e39b4777fc8e67e57a776806e10ae2400

See more details on using hashes here.

File details

Details for the file mockafka_py-0.1.52-py3-none-any.whl.

File metadata

  • Download URL: mockafka_py-0.1.52-py3-none-any.whl
  • Upload date:
  • Size: 21.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for mockafka_py-0.1.52-py3-none-any.whl
Algorithm Hash digest
SHA256 258dd5984d74f0bcb0389dc86ae7d037e9c6b0c3197917fed041423e076e09f0
MD5 c63fab8f8b64a62e8674bc96a158c402
BLAKE2b-256 66671fbd6624b455a4fab94669ce7256c64401561c43c33ef6cee25df3332fe6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page