Skip to main content

A mock library for confluent kafka

Project description

Alt text

Mockafka-py is a Python library designed for in-memory mocking of Kafka.

PyPI - Downloads Codecov CodeFactor codebeat badge GitHub Workflow Status (with event) GitHub GitHub release (with filter) GitHub repo size

Mockafka: Fake Version for confluent-kafka-python & aiokafka

Features

  • Compatible with confluent-kafka
  • Compatible with aiokafka (async support)
  • Supports Produce, Consume, and AdminClient operations with ease.

Getting Start

Installing via pip or poetry

pip install mockafka-py

# or using poetry
poetry add mockafka-py

Usage

Multi-Decorator Examples for confluent-kafka-python

In the following examples, we showcase the usage of multiple decorators to simulate different scenarios in a Mockafka environment. These scenarios include producing, consuming, and setting up Kafka topics using the provided decorators.

Example 1: Using @produce and @consume Decorators

Test Case: test_produce_decorator

from mockafka import produce, consume


@produce(topic='test', key='test_key', value='test_value', partition=4)
@consume(topics=['test'])
def test_produce_and_consume_decorator(message):
    """
    This test showcases the usage of both @produce and @consume decorators in a single test case.
    It produces a message to the 'test' topic and then consumes it to perform further logic.
    # Notice you may get message None
    """
    # Your test logic for processing the consumed message here

    if not message:
        return

    pass

Example 2: Using Multiple @produce Decorators

Test Case: test_produce_twice

from mockafka import produce


@produce(topic='test', key='test_key', value='test_value', partition=4)
@produce(topic='test', key='test_key1', value='test_value1', partition=0)
def test_produce_twice():
    # Your test logic here
    pass

Example 3: Using @bulk_produce and @consume Decorators

Test Case: test_bulk_produce_decorator

from mockafka import bulk_produce, consume


@bulk_produce(list_of_messages=sample_for_bulk_produce)
@consume(topics=['test'])
def test_bulk_produce_and_consume_decorator(message):
    """
    This test showcases the usage of both @bulk_produce and @consume decorators in a single test case.
    It does bulk produces messages to the 'test' topic and then consumes them to perform further logic.
    """
    # Your test logic for processing the consumed message here
    pass

Example 4: Using @setup_kafka and @produce Decorators

Test Case: test_produce_with_kafka_setup_decorator

from mockafka import setup_kafka, produce


@setup_kafka(topics=[{"topic": "test_topic", "partition": 16}])
@produce(topic='test_topic', partition=5, key='test_', value='test_value1')
def test_produce_with_kafka_setup_decorator():
    # Your test logic here
    pass

Example 5: Using @setup_kafka, Multiple @produce, and @consume Decorators

Test Case: test_consumer_decorator

from mockafka import setup_kafka, produce, consume


@setup_kafka(topics=[{"topic": "test_topic", "partition": 16}])
@produce(topic='test_topic', partition=5, key='test_', value='test_value1')
@produce(topic='test_topic', partition=5, key='test_', value='test_value1')
@consume(topics=['test_topic'])
def test_consumer_decorator(message: Message = None):
    if message is None:
        return
    # Your test logic for processing the consumed message here
    pass

Using classes like confluent-kafka

from mockafka import FakeProducer, FakeConsumer, FakeAdminClientImpl
from mockafka.admin_client import NewTopic
from random import randint

# Create topic
admin = FakeAdminClientImpl()
admin.create_topics([
    NewTopic(topic='test', num_partitions=5)
])

# Produce messages
producer = FakeProducer()
for i in range(0, 10):
    producer.produce(
        topic='test',
        key=f'test_key{i}',
        value=f'test_value{i}',
        partition=randint(0, 4)
    )

# Subscribe consumer
consumer = FakeConsumer()
consumer.subscribe(topics=['test'])

# Consume messages
while True:
    message = consumer.poll()
    print(message)
    consumer.commit()

    if message is None:
        break

Output:

"""
<mockafka.message.Message object at 0x7fe84b4c3310>
<mockafka.message.Message object at 0x7fe84b4c3370>
<mockafka.message.Message object at 0x7fe84b4c33a0>
<mockafka.message.Message object at 0x7fe84b4c33d0>
<mockafka.message.Message object at 0x7fe84b4c3430>
<mockafka.message.Message object at 0x7fe84b4c32e0>
<mockafka.message.Message object at 0x7fe84b4c31f0>
<mockafka.message.Message object at 0x7fe84b4c32b0>
<mockafka.message.Message object at 0x7fe84b4c3400>
<mockafka.message.Message object at 0x7fe84b4c3340>
None
"""

Async support

Multi-Decorator Examples for aiokafka

Example 1: Using @aproduce and @aconsume and @asetup_kafka Decorators

Test Case: test_produce_and_consume_with_decorator

import pytest
from mockafka import aproduce, aconsume, asetup_kafka


@pytest.mark.asyncio
@asetup_kafka(topics=[{'topic': 'test_topic', 'partition': 16}], clean=True)
@aproduce(topic='test_topic', value='test_value', key='test_key', partition=0)
@aconsume(topics=['test_topic'])
async def test_produce_and_consume_with_decorator(message=None):
    if not message:
        return

    assert message.key() == 'test_key'
    assert message.value() == 'test_value'

Example 2: Using @aproduce and @asetup_kafka Decorators

Test Case: test_produce_with_decorator

import pytest
from mockafka import aproduce, asetup_kafka
from mockafka.aiokafka import FakeAIOKafkaConsumer

@pytest.mark.asyncio
@asetup_kafka(topics=[{'topic': 'test_topic', 'partition': 16}], clean=True)
@aproduce(topic='test_topic', value='test_value', key='test_key', partition=0)
async def test_produce_with_decorator():
    consumer = FakeAIOKafkaConsumer()
    await consumer.start()
    consumer.subscribe(['test_topic'])
    message = await consumer.getone()

    assert message.key() == 'test_key'
    assert message.value() == 'test_value'

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mockafka_py-0.1.60.tar.gz (16.9 kB view details)

Uploaded Source

Built Distribution

mockafka_py-0.1.60-py3-none-any.whl (23.9 kB view details)

Uploaded Python 3

File details

Details for the file mockafka_py-0.1.60.tar.gz.

File metadata

  • Download URL: mockafka_py-0.1.60.tar.gz
  • Upload date:
  • Size: 16.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for mockafka_py-0.1.60.tar.gz
Algorithm Hash digest
SHA256 466db6e10922f43a8b5a726902060cfbea85fc986735aa1841c029277799e759
MD5 8681e2b1c794b12d735bf690d32ebfcf
BLAKE2b-256 39b069e5f1fddaa4015eff7f976fa99c2dc1e02f1afda031751b8a0030a50164

See more details on using hashes here.

File details

Details for the file mockafka_py-0.1.60-py3-none-any.whl.

File metadata

  • Download URL: mockafka_py-0.1.60-py3-none-any.whl
  • Upload date:
  • Size: 23.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for mockafka_py-0.1.60-py3-none-any.whl
Algorithm Hash digest
SHA256 f01e8fe7ccd835d9382261512dc6804bef0bed8973f31aa2f86c9c177d601d85
MD5 ed9fca0e02ae1fd2660ef061a5cf4ef3
BLAKE2b-256 59c95b35295cd72efc78f6341d5e3159fa8ac6f47bd56005dc6eaae3382fd3ee

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page