Skip to main content

A mock handler for simulating a vector database.

Project description

Mocker DB

This class is a mock handler for simulating a vector database, designed primarily for testing and development scenarios. It offers functionalities such as text embedding, hierarchical navigable small world (HNSW) search, and basic data management within a simulated environment resembling a vector database.

import sys
import numpy as np
sys.path.append('../')
from python_modules.mocker_db import MockerDB, SentenceTransformerEmbedder, MockerSimilaritySearch

Usage examples

The examples contain:

  1. Basic data insertion and retrieval
  2. Text embedding and searching
  3. Advanced filtering and removal
  4. Testing the HNSW search algorithm
  5. Simulating database connection and persistence

1. Basic Data Insertion and Retrieval

# Initialization
handler = MockerDB(
    # optional
    embedder_params = {'model_name_or_path' : 'paraphrase-multilingual-mpnet-base-v2',
                        'processing_type' : 'batch',
                        'tbatch_size' : 500},
    embedder = SentenceTransformerEmbedder,
    ## optional/ for similarity search
    similarity_search_h = MockerSimilaritySearch,
    return_keys_list = [],
    search_results_n = 3,
    similarity_search_type = 'linear',
    similarity_params = {'space':'cosine'},
    ## optional/ inputs with defaults
    file_path = "./mock_persist",
    persist = True,
    embedder_error_tolerance = 0.0
)
# Initialize empty database
handler.establish_connection()

# Insert Data
values_list = [
    {"text": "Sample text 1"},
    {"text": "Sample text 2"}
]
handler.insert_values(values_list, "text")
print(f"Items in the database {len(handler.data)}")

# Retrieve Data
handler.filter_keys(subkey="text", subvalue="Sample text 1")
handler.search_database_keys(query='text')
results = handler.get_dict_results(return_keys_list=["text"])
print(results)
.gitattributes:   0%|          | 0.00/690 [00:00<?, ?B/s]



1_Pooling/config.json:   0%|          | 0.00/190 [00:00<?, ?B/s]



README.md:   0%|          | 0.00/4.13k [00:00<?, ?B/s]



config.json:   0%|          | 0.00/723 [00:00<?, ?B/s]



config_sentence_transformers.json:   0%|          | 0.00/122 [00:00<?, ?B/s]



pytorch_model.bin:   0%|          | 0.00/1.11G [00:00<?, ?B/s]



sentence_bert_config.json:   0%|          | 0.00/53.0 [00:00<?, ?B/s]



sentencepiece.bpe.model:   0%|          | 0.00/5.07M [00:00<?, ?B/s]



special_tokens_map.json:   0%|          | 0.00/239 [00:00<?, ?B/s]



tokenizer.json:   0%|          | 0.00/9.08M [00:00<?, ?B/s]



tokenizer_config.json:   0%|          | 0.00/402 [00:00<?, ?B/s]



modules.json:   0%|          | 0.00/229 [00:00<?, ?B/s]


Items in the database 2
[{'text': 'Sample text 1'}]

2. Text Embedding and Searching

ste = SentenceTransformerEmbedder(# optional / adaptor parameters
                                  processing_type = '',
                                  tbatch_size = 500,
                                  max_workers = 2,
                                  # sentence transformer parameters
                                  model_name_or_path = 'paraphrase-multilingual-mpnet-base-v2',)
# Single Text Embedding
query = "Sample query"
embedded_query = ste.embed(query,
                           # optional
                           processing_type='')
print(embedded_query[0:50])
[-0.04973586  0.09520268 -0.01219508  0.09253863 -0.02301829 -0.02721018
  0.0568395   0.09710983  0.10683874  0.05812277  0.1322755   0.01142832
 -0.06957253  0.0698075  -0.05259365 -0.05755996  0.00816183 -0.0083684
 -0.00861256  0.01442069  0.01188816 -0.09503672  0.07125735 -0.04827785
  0.01473162  0.01084185 -0.1048248   0.07012521 -0.04720647  0.10030048
  0.04455933  0.02131893  0.00667914 -0.05259187  0.06822995 -0.09520472
 -0.00581363 -0.02451877 -0.00384987  0.02750723  0.06960277  0.2401375
 -0.01220019  0.05890937 -0.08468664  0.11379692 -0.03594767 -0.0565297
 -0.01621809  0.09546725]
# Batch Text Embedding
queries = ["Sample query", "Sample query 2"]
embedded_query = ste.embed(queries,
                           # optional
                           processing_type='batch')
print(embedded_query[0][0:50])
print("---")
print(embedded_query[1][0:50])
[-0.04973584  0.09520271 -0.01219508  0.09253865 -0.0230183  -0.02721017
  0.05683954  0.09710982  0.10683876  0.05812274  0.13227552  0.01142829
 -0.06957256  0.06980743 -0.05259361 -0.05755996  0.00816183 -0.00836839
 -0.00861252  0.01442068  0.01188819 -0.09503672  0.07125732 -0.04827787
  0.01473164  0.01084186 -0.1048249   0.07012525 -0.04720649  0.10030047
  0.04455935  0.02131895  0.00667912 -0.05259192  0.06822995 -0.09520471
 -0.00581363 -0.02451887 -0.00384988  0.02750726  0.06960279  0.2401375
 -0.01220022  0.05890937 -0.08468666  0.11379688 -0.03594765 -0.05652964
 -0.0162181   0.09546735]
---
[-0.05087024  0.1231768  -0.0139253   0.10524713 -0.07614321 -0.02349629
  0.05829773  0.15128359  0.18119803  0.03745934  0.12174664  0.00639838
 -0.04045055  0.12758303 -0.06155453 -0.06736137  0.04713943 -0.04134275
 -0.12165949  0.0440988   0.01834145 -0.04796624  0.04922185 -0.00641203
  0.01420631 -0.03602944 -0.01026761  0.09232258 -0.04927172  0.03985452
  0.03566906  0.0833893   0.04922603 -0.09951889  0.0513812  -0.13344644
  0.01626778 -0.01189724  0.0059921   0.05663403  0.04282105  0.26432782
 -0.01122811  0.07177631 -0.11822144  0.08731946 -0.04965353  0.03697515
  0.08965266  0.03107021]
# Search Database
search_results = handler.search_database(query, return_keys_list=["text"])

# Display Results
print(search_results)
[{'text': 'Sample text 1'}]

3. Advanced Filtering and Removal

# Advanced Filtering
filter_criteria = {"text": "Sample text 1"}
handler.filter_database(filter_criteria)
filtered_data = handler.filtered_data
print(f"Filtered data {len(filtered_data)}")

# Data Removal
handler.remove_from_database(filter_criteria)
print(f"Items left in the database {len(handler.data)}")
Filtered data 1
Items left in the database 1

4. Testing the HNSW Search Algorithm

mss = MockerSimilaritySearch(
    # optional
    search_results_n = 3,
    similarity_params = {'space':'cosine'},
    similarity_search_type ='linear'
)
# Create embeddings
embeddings = [ste.embed("example1"), ste.embed("example2")]


# Assuming embeddings are pre-calculated and stored in 'embeddings'
data_with_embeddings = {"record1": {"embedding": embeddings[0]}, "record2": {"embedding": embeddings[1]}}
handler.data = data_with_embeddings

# HNSW Search
query_embedding = embeddings[0]  # Example query embedding
labels, distances = mss.hnsw_search(query_embedding, np.array(embeddings), k=1)
print(labels, distances)
[0] [4.172325e-07]

5. Simulating Database Connection and Persistence

# Establish Connection
handler.establish_connection()

# Change and Persist Data
handler.insert_values([{"text": "New sample text"}], "text")
handler.save_data()

# Reload Data
handler.establish_connection()
print(f"Items in the database {len(handler.data)}")
Items in the database 2

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mocker_db-0.0.3.tar.gz (13.6 kB view details)

Uploaded Source

Built Distribution

mocker_db-0.0.3-py3-none-any.whl (10.9 kB view details)

Uploaded Python 3

File details

Details for the file mocker_db-0.0.3.tar.gz.

File metadata

  • Download URL: mocker_db-0.0.3.tar.gz
  • Upload date:
  • Size: 13.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.13

File hashes

Hashes for mocker_db-0.0.3.tar.gz
Algorithm Hash digest
SHA256 c848933f085b5ac982efad99ce902afe7dcaecb9e4306744565f84442b8b623f
MD5 dbc515059ae94e534ba1b639c2d33028
BLAKE2b-256 079076919de88200e3973b4f668460723a44be86c338041acd46c54f290f9bbd

See more details on using hashes here.

File details

Details for the file mocker_db-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: mocker_db-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 10.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.13

File hashes

Hashes for mocker_db-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 91cae098f9636b7d83db1338531958a6faefb358074c36d205a753de3d9f8ad4
MD5 2388f4ab693349d47b7b817f543f90a3
BLAKE2b-256 1e688c9f8d944edd95a70d4cf52ab1d8a204e0a37574145b54d10f94fc200e00

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page