Skip to main content

A mock handler for simulating a vector database.

Project description

Mocker db

MockerDB

A python module that contains mock vector database like solution built around dictionary data type. It contains methods necessary to interact with this 'database', embed, search and persist.

Mocker DB

This class is a mock handler for simulating a vector database, designed primarily for testing and development scenarios. It offers functionalities such as text embedding, hierarchical navigable small world (HNSW) search, and basic data management within a simulated environment resembling a vector database.

import sys
import numpy as np
sys.path.append('../')
from python_modules.mocker_db import MockerDB, SentenceTransformerEmbedder, MockerSimilaritySearch
/home/kyriosskia/miniconda3/envs/testenv/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
  from .autonotebook import tqdm as notebook_tqdm

Usage examples

The examples contain:

  1. Basic data insertion and retrieval
  2. Text embedding and searching
  3. Advanced filtering and removal
  4. Testing the HNSW search algorithm
  5. Simulating database connection and persistence

1. Basic Data Insertion and Retrieval

# Initialization
handler = MockerDB(
    # optional
    embedder_params = {'model_name_or_path' : 'paraphrase-multilingual-mpnet-base-v2',
                        'processing_type' : 'batch',
                        'tbatch_size' : 500},
    embedder = SentenceTransformerEmbedder,
    ## optional/ for similarity search
    similarity_search_h = MockerSimilaritySearch,
    return_keys_list = None,
    search_results_n = 3,
    similarity_search_type = 'linear',
    similarity_params = {'space':'cosine'},
    ## optional/ inputs with defaults
    file_path = "./mock_persist",
    persist = True,
    embedder_error_tolerance = 0.0
)
# Initialize empty database
handler.establish_connection()

# Insert Data
values_list = [
    {"text": "Sample text 1",
     "text2": "Sample text 1"},
    {"text": "Sample text 2",
     "text2": "Sample text 2"}
]
handler.insert_values(values_list, "text")
print(f"Items in the database {len(handler.data)}")
Items in the database 4

Retrieve Data Basics

# Retrieve Data
handler.filter_keys(subkey="text", subvalue="Sample text 1")
handler.search_database_keys(query='text')
results = handler.get_dict_results(return_keys_list=["text"])
distances = handler.results_dictances
print(results)
print(distances)
[{'text': 'Sample text 1'}]
[0.6744726]

Search and retrieve data

  • get all keys
results = handler.search_database(
    query = "text",
    filter_criteria = {
        "text" : "Sample text 1",
    },
    return_keys_list=None
)
print([{k: str(v)[:30] + "..." for k, v in result.items()} for result in results])
[{'text': 'Sample text 1...', 'text2': 'Sample text 1...'}]
  • get all key - text2
results = handler.search_database(
    query = "text",
    filter_criteria = {
        "text" : "Sample text 1",
    },
    return_keys_list=["-text2"])
print([{k: str(v)[:30] + "..." for k, v in result.items()} for result in results])
[{'text': 'Sample text 1...'}]
  • get all keys + distance
results = handler.search_database(
    query = "text",
    filter_criteria = {
        "text" : "Sample text 1"
    },
    return_keys_list=["+&distance"]
)
print([{k: str(v)[:30] + "..." for k, v in result.items()} for result in results])
[{'text': 'Sample text 1...', 'text2': 'Sample text 1...', '&distance': '0.6744726...'}]
  • get distance
results = handler.search_database(
    query = "text",
    filter_criteria = {
        "text" : "Sample text 1"
    },
    return_keys_list=["&distance"]
)
print([{k: str(v)[:30] + "..." for k, v in result.items()} for result in results])
[{'&distance': '0.6744726...'}]
  • get all keys + embeddings
results = handler.search_database(
    query = "text",
    filter_criteria = {
        "text" : "Sample text 1"
    },
    return_keys_list=["+embedding"]
)
print([{k: str(v)[:30] + "..." for k, v in result.items()} for result in results])
[{'text': 'Sample text 1...', 'text2': 'Sample text 1...', 'embedding': '[-4.94665056e-02 -2.38676026e-...'}]
  • get embeddings
results = handler.search_database(
    query = "text",
    filter_criteria = {
        "text" : "Sample text 1"
    },
    return_keys_list=["embedding"]
)
print([{k: str(v)[:30] + "..." for k, v in result.items()} for result in results])
[{'embedding': '[-4.94665056e-02 -2.38676026e-...'}]

2. Text Embedding and Searching

ste = SentenceTransformerEmbedder(# optional / adaptor parameters
                                  processing_type = '',
                                  tbatch_size = 500,
                                  max_workers = 2,
                                  # sentence transformer parameters
                                  model_name_or_path = 'paraphrase-multilingual-mpnet-base-v2',)
# Single Text Embedding
query = "Sample query"
embedded_query = ste.embed(query,
                           # optional
                           processing_type='')
print(embedded_query[0:50])
[-0.04973587  0.09520266 -0.01219509  0.09253872 -0.02301828 -0.0272102
  0.05683957  0.09710974  0.10683873  0.05812286  0.13227554  0.01142828
 -0.06957257  0.06980742 -0.05259363 -0.05755996  0.00816178 -0.00836837
 -0.00861246  0.01442065  0.01188813 -0.09503674  0.07125735 -0.04827795
  0.01473159  0.01084172 -0.10482483  0.0701253  -0.0472064   0.10030049
  0.04455939  0.0213189   0.00667923 -0.0525919   0.06822997 -0.09520472
 -0.00581364 -0.02451883 -0.00384985  0.02750736  0.06960268  0.24013738
 -0.01220023  0.05890927 -0.08468661  0.11379698 -0.03594772 -0.05652961
 -0.01621804  0.09546741]
# Batch Text Embedding
queries = ["Sample query", "Sample query 2"]
embedded_query = ste.embed(queries,
                           # optional
                           processing_type='batch')
print(embedded_query[0][0:50])
print("---")
print(embedded_query[1][0:50])
[-0.04973588  0.09520268 -0.01219508  0.09253875 -0.02301828 -0.02721018
  0.05683955  0.09710979  0.10683873  0.05812287  0.13227554  0.01142833
 -0.06957259  0.06980736 -0.05259363 -0.05755996  0.0081618  -0.00836839
 -0.00861242  0.01442068  0.01188811 -0.09503674  0.07125735 -0.04827797
  0.01473157  0.01084175 -0.10482486  0.07012529 -0.04720639  0.10030051
  0.04455936  0.02131891  0.00667919 -0.05259192  0.06822997 -0.09520471
 -0.00581361 -0.02451885 -0.00384985  0.02750732  0.06960279  0.24013741
 -0.0122002   0.05890926 -0.08468664  0.11379691 -0.03594773 -0.05652963
 -0.01621806  0.09546743]
---
[-0.05087035  0.12317687 -0.0139253   0.10524721 -0.07614311 -0.02349636
  0.05829769  0.15128353  0.181198    0.03745941  0.12174654  0.00639845
 -0.04045051  0.12758298 -0.06155458 -0.0673613   0.04713941 -0.04134275
 -0.12165944  0.04409872  0.01834138 -0.04796622  0.04922184 -0.00641214
  0.01420629 -0.03602948 -0.01026758  0.09232265 -0.04927171  0.0398545
  0.03566905  0.08338926  0.04922605 -0.09951876  0.05138123 -0.13344647
  0.01626777 -0.01189728  0.00599212  0.05663404  0.04282088  0.26432776
 -0.01122816  0.07177623 -0.11822147  0.08731955 -0.04965367  0.03697514
  0.08965278  0.03107026]
# Search Database
search_results = handler.search_database(query, return_keys_list=["text"])

# Display Results
print(search_results)
[{'text': 'Sample text 1'}, {'text': 'Sample text 1'}, {'text': 'Sample text 2'}]

3. Advanced Filtering and Removal

# Advanced Filtering
filter_criteria = {"text": "Sample text 1"}
handler.filter_database(filter_criteria)
filtered_data = handler.filtered_data
print(f"Filtered data {len(filtered_data)}")

# Data Removal
handler.remove_from_database(filter_criteria)
print(f"Items left in the database {len(handler.data)}")
Filtered data 2
Items left in the database 3

4. Testing the HNSW Search Algorithm

mss = MockerSimilaritySearch(
    # optional
    search_results_n = 3,
    similarity_params = {'space':'cosine'},
    similarity_search_type ='linear'
)
# Create embeddings
embeddings = [ste.embed("example1"), ste.embed("example2")]


# Assuming embeddings are pre-calculated and stored in 'embeddings'
data_with_embeddings = {"record1": {"embedding": embeddings[0]}, "record2": {"embedding": embeddings[1]}}
handler.data = data_with_embeddings

# HNSW Search
query_embedding = embeddings[0]  # Example query embedding
labels, distances = mss.hnsw_search(query_embedding, np.array(embeddings), k=1)
print(labels, distances)
[0] [1.1920929e-07]

5. Simulating Database Connection and Persistence

# Establish Connection
handler.establish_connection()

# Change and Persist Data
handler.insert_values([{"text": "New sample text"}], "text")
handler.save_data()

# Reload Data
handler.establish_connection()
print(f"Items in the database {len(handler.data)}")
Items in the database 3

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mocker_db-0.1.3.tar.gz (17.4 kB view details)

Uploaded Source

Built Distribution

mocker_db-0.1.3-py3-none-any.whl (15.6 kB view details)

Uploaded Python 3

File details

Details for the file mocker_db-0.1.3.tar.gz.

File metadata

  • Download URL: mocker_db-0.1.3.tar.gz
  • Upload date:
  • Size: 17.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for mocker_db-0.1.3.tar.gz
Algorithm Hash digest
SHA256 b2704343a830f17098af31e8c9d2c560f67d364e3edf4ace67f2537bea3bea1f
MD5 feaee045539e71b9f5792bd2dca9b925
BLAKE2b-256 3c5179cf1c20f893d5d13e37ea859f6ccbd2b46eefac0cafe71ea1ea50ad9057

See more details on using hashes here.

File details

Details for the file mocker_db-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: mocker_db-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 15.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for mocker_db-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 75bb3e54ef015b3617e0b648980077d856111df12ae175cbc513ea56914ee26c
MD5 680db80ba82d3925570ac312197184a8
BLAKE2b-256 a54d1d470a89d30aa7a957ecb6fd4ab9eef0223e5ca67ed79e43c6bcfbf79b27

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page