Skip to main content

Package to help standardization of data used in mocks.

Project description

Motivation

When employing mocks to substitute actual databases in unit tests, a common challenge arises wherein the tests may not accurately reflect the data in the database, thereby overlooking specific and unique scenarios.

To address this issue, Mockito strives to standardize the data being mocked.

Structure

Imagine that are 2 SQL tables, with the following structures:

table1

Column Type
id integer
name text
menus text

table2

Column Type
id integer
name text
description text

Based on them, it is necessary to create a dictionary, where the keys are the names of the tables, and the values are a list of dictionaries, where these dictionary keys would be the table columns and the values are examples of data to be returned by Mockito.

In the example below, the dictionary will contain table1 and table2, where the table1 will have 2 data examples and the table2 only will have 1.

data_file.py

DEFAULT_BASES = {
    "table1": [
        {"id": 1, "name": "Guest", "menus": "menu_1"},
        {"id": 2, "name": "Some One", "menus": "menu_2"},
    ],
    "table2": [
        {"id": 1, "name": "OtherName", "Description": "Super important data"},
    ]
}

Method one()

Basic utilization:

The function below returns the id and name from table1:

file.py

def return_table_data(id):
    table_data = Table1.query.filter(
        Table1.id == id
    ).with_entities(
        Table1.id,
        Table1.name
    ).first()
    
    return table_data

The function test, using the method one() from Mockito will be something like this:

from mockito.mockito import Mockito

from data_file import DEFAULT_BASES
from file import return_table_data


@mock_patch('file.Table1')
class TestReturnData():
def test_retorn_data(self, mock_table1):
    mock_table1.query.filter.return_value.with_entities.return_value.first.return_value = (
        Mockito(
            data_dict={"table1": ["id", "name"]},
            data_bases=DEFAULT_BASES,
        ).one()
    )
    
    response = return_table_data(id = 1)
    print(response)
    print(response.id)
    print(response.name)
    print(response.to_dict())

Outputs:

<MoMock>
1
Guest
{"id": 1, "name": "Guest"}

The object return from the Mockito is called MoMock, which is a Mock with a method called to_dict()

Column with alias:

To assign the alias potato to the name column within the function, provide the list ["name", "potato"] to Mockito. Note that the id column will also be included in the result, but it won't be given an alias:

from mockito.mockito import Mockito

from data_file import DEFAULT_BASES
from file import return_table_data


@mock_patch('file.Table1')
class TestReturnData():
def test_retorn_data(self, mock_table1):
    mock_table1.query.filter.return_value.with_entities.return_value.first.return_value = (
        Mockito(
            data_dict={"table1": ["id", ["name", "potato"]]},
            data_bases=DEFAULT_BASES,
        ).one()
    )
    
    response = return_table_data(id = 1)
    print(response)
    print(response.id)
    print(response.potato)
    print(response.to_dict())

Outputs:

<MoMock>
1
Guest
{"id": 1, "potato": "Guest"}

Non-existent column:

If a column is passed to Mockito that does not exist in DEFAULT_BASES for the table in question, it will have the value invalid column in its place, in the example below the foo column was chosen and it is not present in the DEFAULT_BASES dictionary for the table1 table:

from mockito.mockito import Mockito

from data_file import DEFAULT_BASES
from file import return_table_data


@mock_patch('file.Table1')
class TestReturnData():
def test_retorn_data(self, mock_table1):
    mock_table1.query.filter.return_value.with_entities.return_value.first.return_value = (
        Mockito(
            data_dict={"table1": ["id", "foo"]},
            data_bases=DEFAULT_BASES,
        ).one()
    )
    
    response = return_table_data(id = 1)
    print(response)
    print(response.id)
    print(response.foo)
    print(response.to_dict())

Outputs:

<MoMock>
1
invalid column
{"id": 1, "foo": "invalid column"}

Joins

To retrieve data from multiple tables, you can achieve this by providing the table name along with its respective columns to Mockito. In the example below, it will return the id and name columns from table1, as well as the description column from the table2: file2.py

def return_table_data(id):
    table_data = Table1.query.filter(
        Table1.id == id
    ).join(
        Table2, "some valid condition here"
    ).with_entities(
        Table1.id,
        Table1.name
    ).first()
    
    return table_data

Test_file.py

from mockito.mockito import Mockito

from data_file import DEFAULT_BASES
from file2 import return_table_data


@mock_patch('file2.Table1')
class TestReturnData():
def test_retorn_data(self, mock_table1):
    mock_table1.query.filter.return_value.join.return_value.with_entities.return_value.first.return_value = (
        Mockito(
            data_dict={
                "table1": ["id", "name"],
                "table2": ["description"],
            },
            data_bases=DEFAULT_BASES,
        ).one()
    )
    
    response = return_table_data(id = 1)
    print(response)
    print(response.id)
    print(response.name)
    print(response.description)
    print(response.to_dict())

Outputs:

<MoMock>
1
Guest
Super important data
{"id": 1, "name": "Guest": "description": "Super important data"}

Method all_combinations()

Basic utilization:

This method is similar to one() but will return a list of all combinations in the DEFAULT_TABLES variable.

from mockito.mockito import Mockito

from data_file import DEFAULT_BASES
from file import return_table_data


@mock_patch('file.Table1')
class TestReturnData():
def test_retorn_data(self, mock_table1):
    mock_table1.query.filter.return_value.with_entities.return_value.first.return_value = (
        Mockito(
            data_dict={"table1": ["id", "name"]},
            data_bases=DEFAULT_BASES,
        ).all_combinations()
    )
    
    response = return_table_data(id = 1)
    print(response)
    print(response[0].id)
    print(response[0].name)
    print(response[0].to_dict())
    print(response[1].id)
    print(response[1].name)
    print(response[1].to_dict())

Outputs:

[<MoMock>, <MoMock>]
1
Guest
{"id": 1, "name": "Guest"}
2
Some One
{"id": 2, "name": "Some One"}

Return list of dictionaries:

The all_combinations method has the return_dicts parameter (which by default is equal to False) and if changed to True, it will return a list of dictionaries instead of MoMock objects.

from mockito.mockito import Mockito

from data_file import DEFAULT_BASES
from file import return_table_data


@mock_patch('file.Table1')
class TestReturnData():
def test_retorn_data(self, mock_table1):
    mock_table1.query.filter.return_value.with_entities.return_value.first.return_value = (
        Mockito(
            data_dict={"table1": ["id", "name"]},
            data_bases=DEFAULT_BASES,
        ).all_combinations(return_dicts=True)
    )
    
    response = return_table_data(id = 1)
    print(response)

Outputs:

[{"id": 1, "name": "Guest"}, {"id": 2, "name": "Some One"}]

Joins

Just like in the case of the one() method, you can pass the table name and its columns to Mockito, the difference is that Mockito will combine all possible values. In the example below, table1 has 2 possible values, and table2 has only 1, thus all_combinations returns 2 results, being a combination of the first value from table1 with the only value from table2, and the second value from the table1 with a single value from the table2.

from mockito.mockito import Mockito

from data_file import DEFAULT_BASES
from file2 import return_table_data


@mock_patch('file2.Table1')
class TestReturnData():
def test_retorn_data(self, mock_table1):
    mock_table1.query.filter.return_value.join.return_value.with_entities.return_value.first.return_value = (
        Mockito(
            data_dict={
                "table1": ["id", "name"],
                "table2": ["description"],
            },
            data_bases=DEFAULT_BASES,
        ).all_combinations()
    )
    
    response = return_table_data(id = 1)
    print(response)
    print(response[0].id)
    print(response[0].name)
    print(response[0].description)
    print(response[0].to_dict())
    print(response[1].id)
    print(response[1].name)
    print(response[1].description)
    print(response[1].to_dict())

Outputs:

[<MoMock>, <MoMock>]
1
Guest
Super important data
{"id": 1, "name": "Guest", "description": "Super important data"}
2
Some One
Super important data
{"id": 2, "name": "Some One", "description": "Super important data"}

The table below is a representation of how MoMock elements would be constructed:

Values First value from table2
First value from table1 First MoMock
Second value from table1 Second MoMock

If table2 also had 2 values, the all_combinations method would return a list with 4 combinations, with the structure:

Values First value from table2 Second value from table2
First value from table1 First MoMock Third MoMock
Second value from table1 Second MoMock Fourth MoMock

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mockito-test-0.3.2.tar.gz (6.1 kB view details)

Uploaded Source

Built Distribution

mockito_test-0.3.2-py3-none-any.whl (5.5 kB view details)

Uploaded Python 3

File details

Details for the file mockito-test-0.3.2.tar.gz.

File metadata

  • Download URL: mockito-test-0.3.2.tar.gz
  • Upload date:
  • Size: 6.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for mockito-test-0.3.2.tar.gz
Algorithm Hash digest
SHA256 916368bde558f0ab136b309dbbd18a833622358cdd04b9e08556610f92b73bb8
MD5 9b153f34c33567a5d1cef49540a82c17
BLAKE2b-256 95678d7cbc85a50a7f8db8a03e7af75eef52ee8fbc9511b497d43651d0af9294

See more details on using hashes here.

File details

Details for the file mockito_test-0.3.2-py3-none-any.whl.

File metadata

File hashes

Hashes for mockito_test-0.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 276855da3e846ec918d806e0e16f8be243ee83391283cd99aacf64cf0fcb1109
MD5 9af66c7da314254a2c4f71dcc5f17230
BLAKE2b-256 e8936f18df766eefc278076b768e9c091b54ea7d811e2daf9ab0d34b332c2c35

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page